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Asymmetric RAID

* Optimize storage utilization by leveraging a mix of heterogeneous devices

* Asymmetrically distribute data across the disk array
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All-flash arrays (AFAs)

e Storage infrastructure that uses only SSDs
* High performance 25
* Low latency
* Better reliability
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Existing AFA solutions

* Existing AFA solutions spread I/0 to the disk pool in a balanced manner.
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v Throughput
v’ Data reliability
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Existing AFA solutions

 Existing AFA solutions spread 1/0 to the disk pool in a balanced manner
v'1/0 parallelism
v’ Throughput
v’ Data reliability

_ Write Strategy Disk Organization Issue tackled

‘ Assume that storage components are homogeneous

e Performance and capacity

Linux-MD In-place write RAID

SWAN [ATC'19] Log write 2D Array GC interference
IODA [SOSP '21] In-place write RAID-5/6 GCinterference
RAID+ [FAST '18] In-place write MOLS-based Disk partitioning
FusionRAID [FAST '21] Log write Pool I/O determinism
StRAID [ATC '22] In-place write RAID I/O concurrency
Diff-RAID [EuroSys '10] In-place write RAID Correlated failures
HeART [FAST '19] In-place/log write Pool System reliability
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Tiger [OSDI '22] In-place/log write Pool System reliability



Existing AFA solutions

 Existing AFA solutions spread 1/0 to the disk pool in a balanced manner
v'1/0 parallelism
v’ Throughput
v’ Data reliability

_ Write Strategy Disk Organization Issue tackled Disk Heterogeneity

—) Assume that storage components are homogeneous

e Performance and capacity

Linux-MD In-place write RAID

SWAN [ATC '19] Log write 2D Array GC interference Low

IODA [SOSP '21] In-place write RAID-5/6 GC interference Low

RAID+ [FAST '18] In-place write MOLS-based Disk partitioning Low \

FusionRAID [FAST '21] Log write Pool I/0 determinism Low

StRAID [ATC '22] In-place write RAID I/O concurrency Low Low disk utilization
when considering

Diff-RAID [EuroSys '10] In-place write RAID Correlated failures Low disk heterogeneity

HeART [FAST '19] In-place/log write Pool System reliability Medium

Pacemaker [OSDI '20] In-place/log write Pool System reliability Medium

Tiger [OSDI '22] In-place/log write Pool System reliability Medium



AFA with heterogeneous devices

 What if include a heterogeneous mix of devices?
* NVMe: Samsung PM9A3
* SATA: Samsung PM1645
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 What if include a heterogeneous mix of devices?

* NVMe: Samsung PM9A3
* SATA: Samsung PM1645
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AFA with heterogeneous devices

 What if include a heterogeneous mix of devices?

* NVMe: Samsung PM9A3
* SATA: Samsung PM1645

Significant storage under-utilization:
* Performance is bottlenecked by the

poor-performing drives;
Capacity is determined by the minimal
capacity device.
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Is this a common issue?

* Heterogeneous storage devices are ubiquitous
* Linux-MD: supporting arrays with more than 384 component devices
* NetApp: SSDs with varying deployment times [FAST ‘20]
* Alibaba Cloud: 12 to 18 SSDs from multiple vendors [ATC ‘19]
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Is this a common issue?

* Heterogeneous storage devices are ubiquitous

* Linux-MD: supporting arrays with more than 384 component devices
* NetApp: SSDs with varying deployment times [FAST 20]
* Alibaba Cloud: 12 to 18 SSDs from multiple vendors [ATC ‘19]

* The challenge persists even among disks of identical models

* Performance variability from manufacturing

* Device aging

* Dell Datacenter NVMe Drive
e 3D TLC NAND

Aging phase:

~100 TB random writes/day

Measuring phase:

Read-only workload with high IO depth
Avoid the impact of GC and host
Fail-slow symptoms
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Is this a common issue?

» SSDs can experience varying levels of degradation within RAID configurations.
* E.g., with skewed/partial-stripe workloads
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Is this a common issue?

» SSDs can experience varying levels of degradation within RAID configurations.
* E.g., with skewed/partial-stripe workloads
* Experiments using FEMU

* RAID: RAID-5 with 4 identical SSDs.
* SSD: 32 GiB physical capacity (OP = 14%).
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Asymmetric RAID

e Goal

* Optimize system performance and storage utilization by leveraging a mix of
heterogeneous devices

* High-level idea

* Asymmetrically distribute data across the disk array

* Approach
* Capacity = heterogeneity-aware data distribution
* Performance = performance-optimized data placement
* L2P addressing = mapping table/learned models



Asymmetric RAID

* Asimple

(2+1) RAID-5 configuration

e 2 data chunks and 1 parity chunk from a 5-disk array

Higher performance |::> Lower performance
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Asymmetric RAID

e Asimple (2+1) RAID-5 configuration
e 2 data chunks and 1 parity chunk from a 5-disk array
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Asymmetric RAID

* Asimple

(2+1) RAID-5 configuration

e 2 data chunks and 1 parity chunk from a 5-disk array

Higher performance |::> Lower performance
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Asymmetric RAID

* Asimple

(2+1) RAID-5 configuration

e 2 data chunks and 1 parity chunk from a 5-disk array

Higher performance |::> Lower performance
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Heterogeneity-aware data distribution

 Maximize the available logical capacity exported to the host

 Mathematical modeling
* Parameters: disk pool size N, disk sizes S; (1 < i < N), data stripe width k (k < N), and chunk size C.
* Binary decision variable x;j;: representing whether chunk k of data stripe j is assigned to disk .
* Objective function D: maximize the number of complete k-width data stripes.
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* Disk capacity limits the number of chunks it can hold



Heterogeneity-aware data distribution

 Maximize the available logical capacity exported to the host

 Mathematical modeling
* Parameters: disk pool size N, disk sizes S; (1 < i < N), data stripe width k (k < N), and chunk size C.
* Binary decision variable x;j;: representing whether chunk k of data stripe j is assigned to disk .
* Objective function D: maximize the number of complete k-width data stripes.

Maximize D

e Constraints inherited from the RAID N
e Each chunk in a data stripe is assigned to exactly one disk injk =1, Vj,Vk

* No two chunks in a stripe are on the same disk i=1 o
* Disk capacity limits the number of chunks it can hold Xijk + Xijie < 1, VLV VK # k

D
Z C- x,-jk < S;', Vi

Solved by integer linear programming >




Performance-optimized data placement

* Build a performance-aware logical volume
* Imbue performance info into logical blocks

Higher performance |::> Lower performance
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Performance-optimized data placement

* Build a performance-aware logical volume
* Imbue performance info into logical blocks

Higher performance |:> Lower performance
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Performance-optimized data placement

* Build a performance-aware logical volume
* Imbue performance info into logical blocks

Higher performance |:> Lower performance

[
Performance-sensitve dateL A6 | B1 | B2 | B? S
(e.g., F2FS metadata & hot Cold data (e.g., F2F \ddr.
_____ logs) me--ee------ warm&coldlogs) -Z-_.
:'éSD1 . R Pass | C1 .AID Addr.
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SSD3 Pci2 Performance: SSD1 = SSD2 = SSD4 > SSD5 > SSD3 blocks with low overhead
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L2P addressing

* Asym-RAID requires a log
e 25 bytes for each entry

Mapping
550 table - 2
0x1 0x0
ox2 0x0

SSDO SSD 1 SSD 2

ical-to-physical mapping for each stripe group

User Addr.
1. User LBA ---.__ Start Disk Disk
AFA Addr. ) i LBA |-®"9™ | components| offsets
2. Group ID & offset 4 Stripe_group 1| 0 6 (1.2,4) | (2,0,2
\4 .
3. Stripe ID (group)-----__ N Stripe_group 2| 6 4 (1,4,5) | (0,0,0)
4. Disk ID & LBA <777 Stripe_group 3| 10 2 (1,2,3) | (5,3,0)

One-to-one mapping table:
~0.1% space overhead worst case
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Learned models for addressing

* e-bounded piecewise linear model
* M =5sl, ic, LPAgiyrt, V=Sl - x +1icC
* e-bound: |Y,,0q = Viear|< €
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Workload-adaptive data placement

RocksDB MapReduce

I/O request /0O request

- o=

.’ ‘l’ Workload-adaptive data placement 'l; ", Asym-RAID

E Parity chunk
|:| Hot chunk
I:l Regular chunk
[ ] cold chunk
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\ =
O O B O B
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. Higher performance | > Lower performance
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Workload-adaptive data placement

RocksDB MapReduce

I/O request I/O request
I,’ 'l' Workload-adaptive data placement L \\ Asym-RAID

: D Hot chunk
D Regular chunk

Model 1.1 I
- 1
1
: D Cold chunk
1
1

Model 2.2

Challenges:

- o mm Em m

(Model 3.1] [ Model 3.2 | : Misprediction
. ," Metadata persistence
e _8“ --------- é_“ K Model retraining
: 8 8 6 : Data redistribution
E SSD1 SSD2 SSD3 SSD4 SSD5 E Fault tolerance
1
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Conclusion

* Existing AFA solutions lead to significant disk underutilization when
considering device heterogeneity

* Asym-RAID asymmetrically distributes data across the array to fully utilize
the capacity of each SSD
* Capacity = determine data layout through mathematical modeling
* Performance = imbue performance info into logical blocks

* Ongoing work
* Adaptive data layout for dynamic disk heterogeneity
* Learned index models for addressing
* RAID over disaggregated storage
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Conclusion

* Existing AFA solutions lead to significant disk underutilization when
considering device heterogeneity

* Asym-RAID asymmetrically distributes data across the array to fully utilize
the capacity of each SSD

* Capacity = determine data layout through mathematical modeling
* Performance = imbue performance info into logical blocks

* Ongoing work
* Adaptive data layout for dynamic disk heterogeneity
e Learned index models for addressing Thank you!
* RAID over disaggregated storage Q&A

Contact: zjiao0O4@syr.edu
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