Generating Realistic Wear Distributions for SSDs

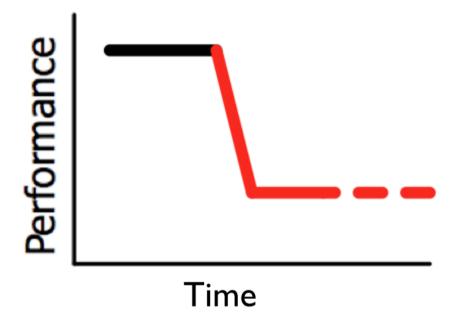
Ziyang Jiao, Bryan S. Kim Syracuse University

Overview

- The fail-slow symptom
- Challenges in SSD aging
- Related works
- Fast-forwardable SSD
- Evaluation
- Conclusion and future work

The fail-slow symptom of SSDs

• Performance degradation



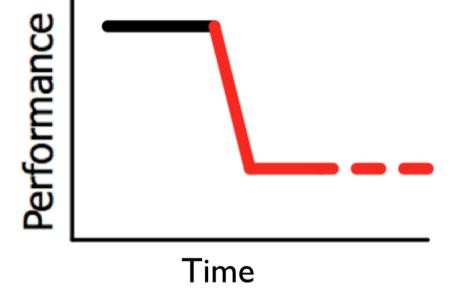
• Haryadi S. Gunawi et al, "Fail-Slow at Scale: Evidence of Hardware Performance Faults in Large Production Systems", FAST 2018

The fail-slow symptom of SSDs

• Performance degradation

• No existing SSD development frameworks consider aging in their

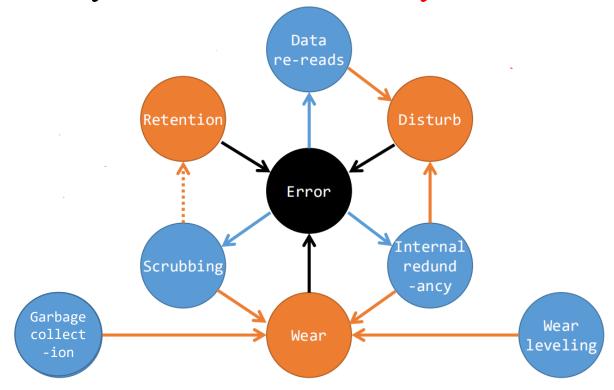
design



• Haryadi S. Gunawi et al, "Fail-Slow at Scale: Evidence of Hardware Performance Faults in Large Production Systems", FAST 2018

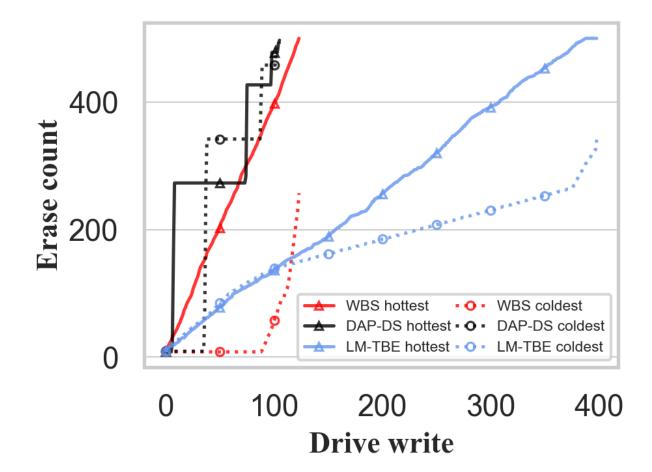
Challenges

- The overhead of aging process → Efficiency
- The internal intricacy of SSDs → Accuracy



Challenges

• The irregularity of block erasure



Current art

Preconditioning:

The process of writing data to the device to prepare it for steady state measurement.

Expensive:

- ***** Resources
- **X** Time

• https://www.snia.org/sites/default/files/technical-work/pts/release/SNIA-SSS-PTS-Enterprise-v1.1.pdf

File system aging

- FS aging is not applicable to SSD aging
 - FS aging: generate a fragmented state of logical block layouts
 - SSD aging: physical aging of blocks
- Preconditioning is more akin to FS aging
 - Populating and invalidating the address space
 - Cannot sufficiently age the device to an end-of-life state.

ML for simulation

• DEVS

DEVS execution acceleration with machine learning.

SpringSim 2016: https://dl.acm.org/doi/10.5555/2975389.2975399

Consider multiple model candidates

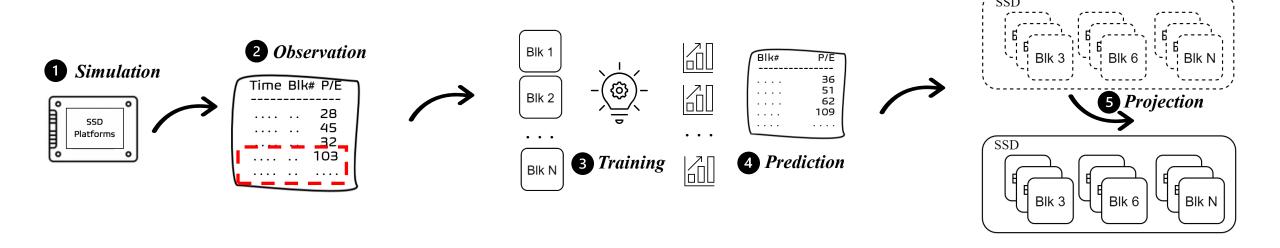
• CML

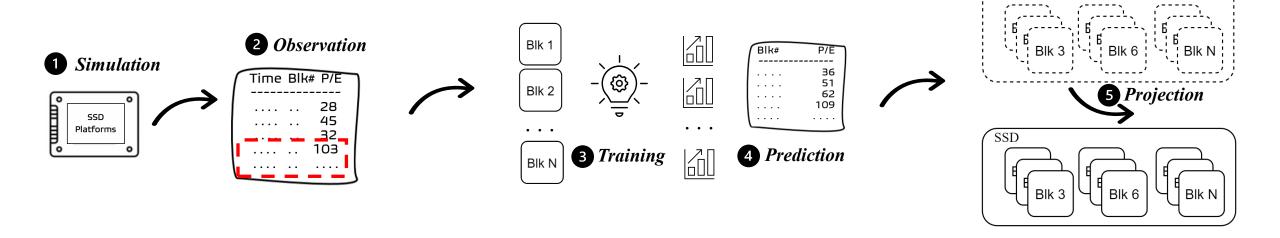
Using continuous statistical machine learning to enable high-speed performance prediction in hybrid instruction-/cycle-accurate instruction set simulators.

CODES+ISSS 2009: https://dl.acm.org/doi/10.1145/1629435.1629478

Continuously incorporate the latest data to update model

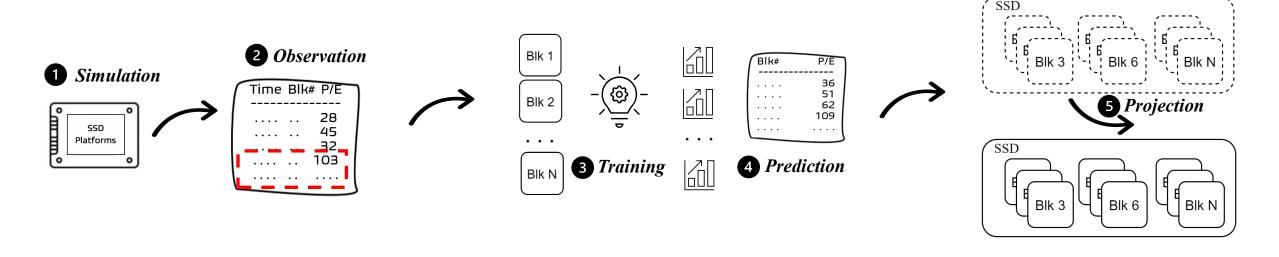
Fast-forwardable SSD





Simulation & Observation

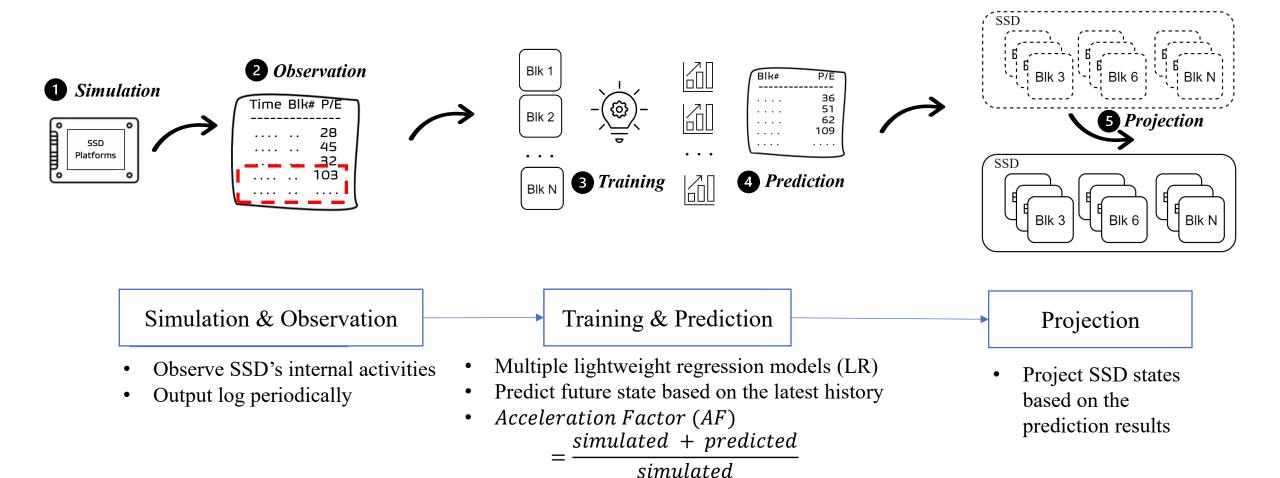
- Observe SSD's internal activities
- Output log periodically

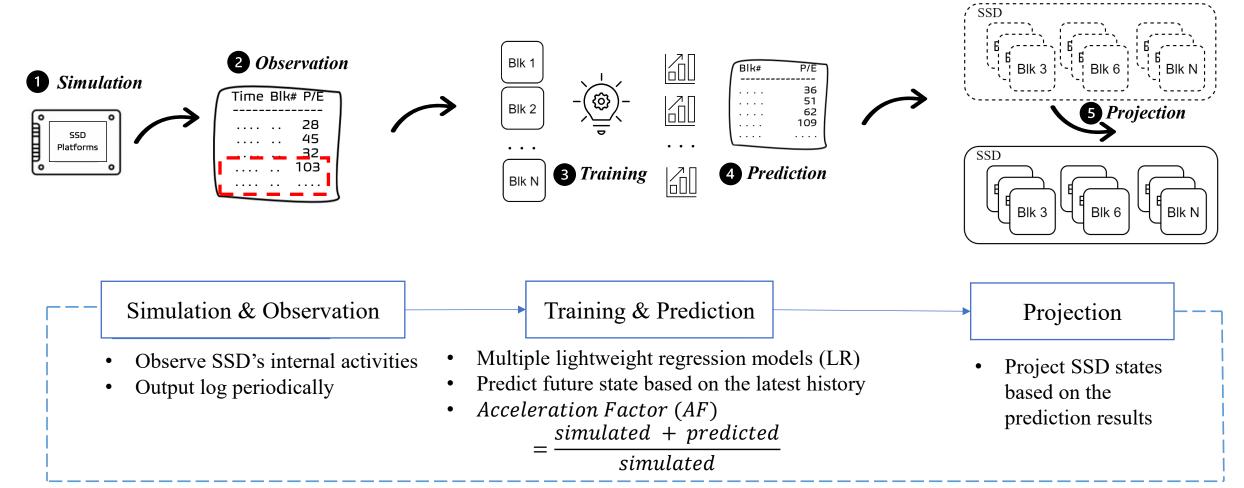


Simulation & Observation

- Observe SSD's internal activities
- Output log periodically

- Training & Prediction
- Multiple lightweight regression models (LR)
- Predict future state based on the latest history
- Acceleration Factor (AF) $= \frac{simulated + predicted}{simulated}$





Enhancing efficiency

- Build models for each block:
 - The summed prediction overhead is proportional to the drive capacity (the # of blocks), although the model is lightweight itself.
- Two approaches to further enhancing efficiency:
 - A naïve approach: based on sampling
 - An analytic approach: based on distribution modeling

Approximation by distribution modeling

• Challenge: given only information of a subset of blocks, how can we estimate the blocks that behave distinctively than samples?

- Use extrapolation as the estimate method:
 - –Assume that the wear distribution of blocks adheres to an underlying measurable distribution $\rho(\cdot)$
 - -Estimate the future wear using the prediction result and the density function that models the underlying distribution.

Approximation by distribution modeling

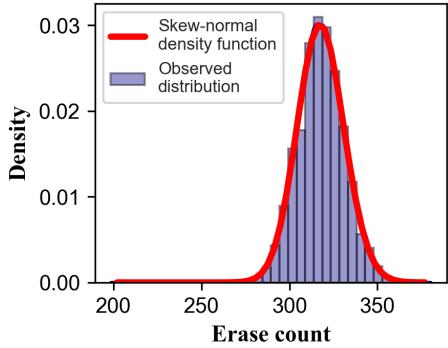
• Approximation by distribution modeling:

 $-\rho(\cdot)$: a skew-normal distribution with skewness α , location μ , and scale

parameter σ .

$$-\alpha = 0.75$$
, $\mu = 310$, $\sigma = 15.1$

Fail to reject the null hypothesis on
10⁵ samples with p > 0.1 using
Kolmogorov–Smirnov goodness-of-fit test



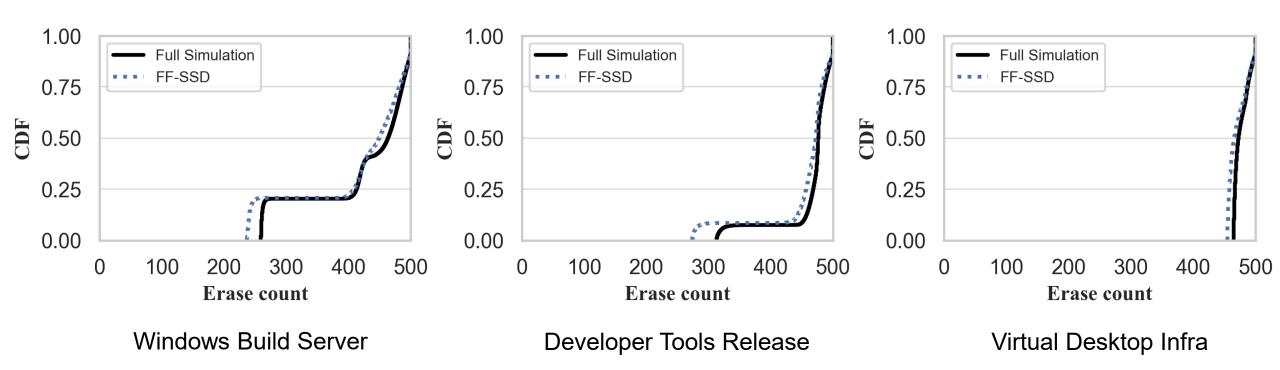
Skew norm fit to the measured distribution

Evaluation

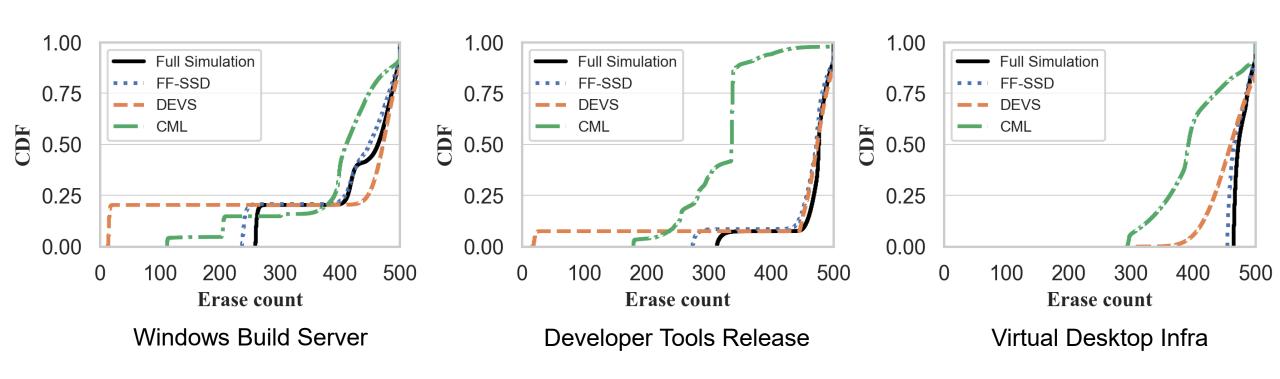
- SSD development platforms:
 - FTLSim SYSTOR 2012
 - Amber MICRO 2018
 - **FEMU** FAST 2018
- Workloads:
 - YCSB
 - VDI (virtual desktop infrastructure)
 - Microsoft production servers
 - Microsoft enterprise servers

FTLSim			
Pages per block	256	Physical capacity	284 GiB
Page size	4 KiB	Logical capacity	256 GiB
Endurance limit	500	Over-provisioning	0.11
Wear leveling	PWL	Garbage collection	Greedy
Amber			
Channels	8	Page size	4 KiB
Packages per channel	4	Physical capacity	285 GiB
Dies per package	2	Logical capacity	256 GiB
Planes per die	2	Over-provisioning	0.11
Blocks per plane	1136	Garbage collection	Greedy
Pages per block	512	Wear leveling	Var-based
FEMU			
Channels	8	Page size	4 KiB
Luns per channel	8	Physical capacity	16 GiB
Planes per lun	1	Logical capacity	15 GiB
Blocks per plane	256	Over-provisioning	0.07
Pages per block	256	Garbage collection	Greedy

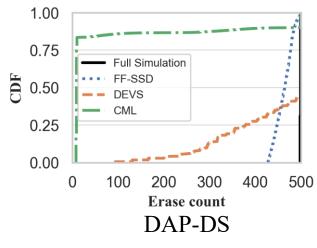
SSD aging until failure on FTLSim

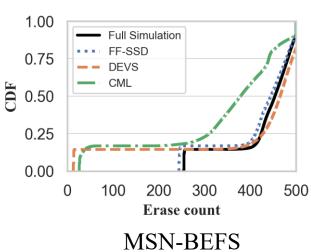


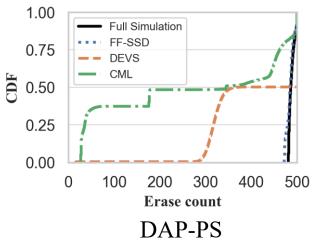
SSD aging until failure on FTLSim

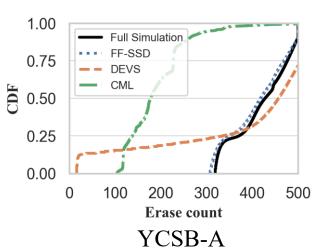


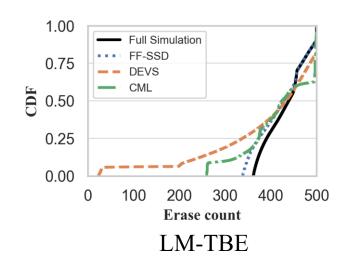
SSD aging until failure on FTLSim

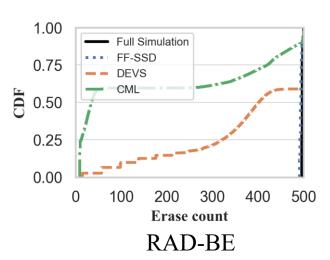




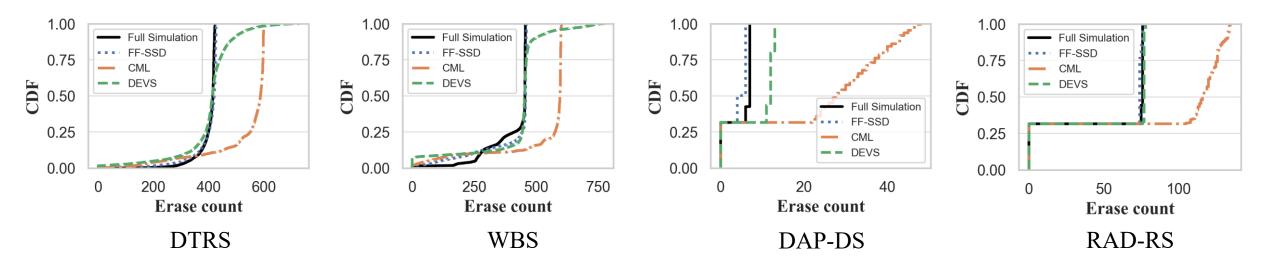






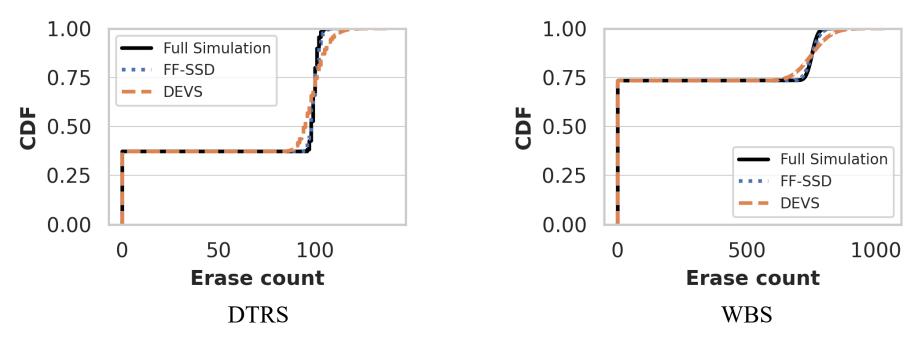


SSD aging on Amber



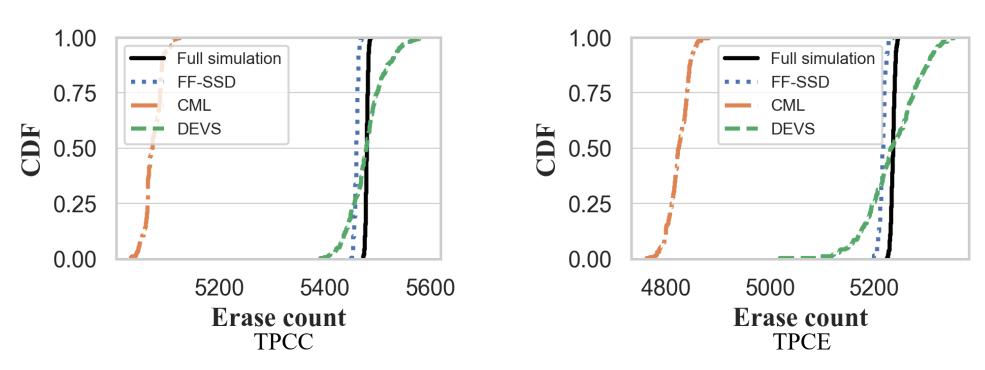
SSD aging with 600 iterations of the workloads on Amber.

Without wear leveling



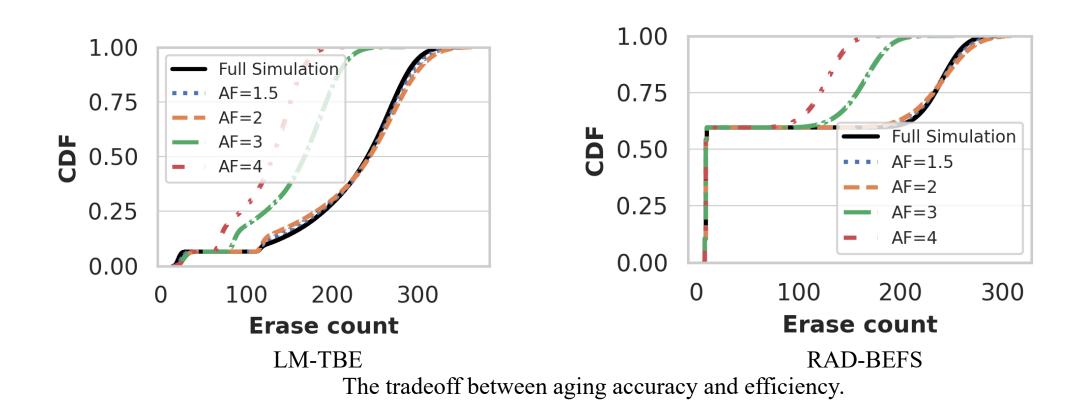
Performance comparison of FF-SSD and DEVS on FTLSim without WL.

SSD aging on FEMU



SSD aging with 50 iterations of the workloads on FEMU.

Accuracy and efficiency tradeoff



Conclusion & future work

- We present fast-forwardable SSD, an ML-based SSD aging framework that generates representative future wear-out states.
 - Accurate (up to 99% similarity)
 - Efficient (accelerates simulation time by $2\times$)
 - Modular (can be integrated with existing simulators and emulators)
- Codebase will be available soon
 - https://github.com/ZiyangJiao/FF-SSD
- Future work
 - Improving accuracy through adaptive acceleration.
 - Predicting on the wear states real SSDs
 - More promising directions...

Thank you!

Ziyang Jiao zjiao04@syr.edu