
ABSTRACT

The explosive growth of data has led to increased attention on NAND flash-based solid-

state drives (SSDs), which offer high performance, low power consumption, and significant

capacity per unit volume when compared to traditional hard-disk drives (HDDs). How-

ever, as NAND flash memory density continues to scale, modern SSDs suffer from what is

known as fail-slow symptoms, and their performance degrades over time as they wear out.

In this dissertation, we focus on understanding and addressing the performance, reliability,

and sustainability challenges of modern flash-based storage systems by modeling key met-

rics, analyzing the design tradeoffs between these metrics, and optimizing existing storage

I/O stack across various layers.

The first part of the dissertation presents our comprehensive study on SSD aging and fail-

slow symptoms. Flash memory has a limited lifetime and suffers reduced reliability as

the number of program/erase (P/E) cycles increases. To understand the aged behavior

of SSDs, we first propose fast-forwardable SSD (FF-SSD), a machine learning-based SSD

aging framework that generates representative future wear-out states without enduring

prohibitive simulation times. FF-SSD incrementally builds lightweight regression models

for flash blocks to capture the changes in SSD-internal states and predicts their trajectory

using the information from past executions. With that, we further conduct an in-depth

study on existing SSD lifetime extension algorithms and uncover that conventional wear

leveling methods are far from perfect. Our finding challenges the established norms of SSD

design and calls for a reevaluation of wear leveling’s role.

The second part of the dissertation introduces the design and implementation of a capacity-

variant storage system (CVSS) for modern SSDs. In the current capacity-invariant inter-

face where the storage device exports a fixed capacity throughout its lifetime, an SSD has



no other choice but to trade performance for reliability as it wears out. Instead, CVSS

redesigns the existing storage interface from a holistic perspective by exploiting trade-

offs among capacity, performance, and reliability (CPR) and proposes a flexible capacity-

variant interface that allows the SSD to maintain performance by gracefully reducing the

number of exported blocks.

The third part of the dissertation proposes to improve the performance and sustainabil-

ity of all-flash array (AFA) storage under heterogeneous device environments. The overall

architecture of existing AFA systems is built around the assumption that the underlying

storage components are homogeneous. This architecture results in significant disk under-

utilization when considering heterogeneity among storage devices, particularly for modern

SSDs. In response to these challenges, we present paRAID (placement asymmetric RAID),

a heterogeneity-aware AFA system that transitions from traditional symmetric architec-

tures to an asymmetric architecture, enabling the full utilization of all storage devices for

optimized performance and sustainability.
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1CHAPTER 1

Introduction

The I/O stack is a fundamental component of storage system architecture, bridging the

gap between applications and physical storage media. It consists of multiple layers, includ-

ing the application layer, file system, block layer, device drivers, and firmware controller,

each responsible for managing and optimizing data flow to and from storage devices. The

stack must address challenges such as workload diversity, scalability, and hardware hetero-

geneity while maintaining efficient utilization of underlying storage media.

NAND flash-based solid-state drives (SSD) are an integral part of today’s computing sys-

tems, used in mobile and embedded devices to large-scale data centers. In the context of

flash-based storage systems, the I/O stack plays a crucial role in managing the unique

properties of NAND flash, such as its erase-before-write requirement, limited endurance,

and asymmetric read/write performance. Effective optimization of the I/O stack is critical

to leveraging the full potential of modern storage systems.

1.1. Key Performance Metrics for Modern Storage Systems

The performance of a modern storage system is usually measured with four metrics: (1)

throughput and latency, (2) reliability, (3) lifetime, and (4) sustainability.

• Throughput and Latency. (1) Throughput measures the average bandwidth of

data processed per unit of time. High throughput is a primary objective for data-

intensive workloads like video streaming and machine learning training. (2) Latency

refers to the time required to complete a single I/O operation. Minimizing latency is

essential for achieving responsive systems, especially in latency-sensitive applications

such as online transaction processing (OLTP) and real-time analytics.



2• Reliability. Reliability ensures the consistent and error-free operation of storage

systems, even under adverse conditions. It is measured as the probability that data

retrieved from the system is not the same as the originally stored data [162]. Key

aspects include: (1) data integrity: protecting against bit errors and ensuring accu-

rate data retrieval; and (2) fault tolerance: mitigating the impact of hardware fail-

ures through redundancy mechanisms such as redundant array of independent disks

(RAID) and erasure coding.

• Lifetime. The lifetime of a storage system is influenced by the physical character-

istics of storage media. Lifetime is measured as the amount of time from the point

that a storage device is used to the point that the storage device is no longer us-

able. Techniques such as wear leveling, garbage collection, and write amplification

reduction are employed to extend the lifespan of SSDs and maintain performance

over time.

• Sustainability. With the growing emphasis on environmental impact, sustainability

has become a critical metric for modern data-intensive storage systems. The car-

bon footprint of computing systems typically consists of embodied emissions from

hardware manufacturing and infrastructure activities [111] and operational emissions

from device usage.

1.2. Open Research Questions

Solid-State Drives (SSDs) have emerged as the dominant storage medium in both con-

sumer and enterprise environments, driven by their exceptional performance and relia-

bility. Unlike traditional Hard Disk Drives (HDDs), SSDs rely on NAND flash memory,

which introduces unique research questions that directly influence the aforementioned per-

formance metrics:



3• Performance consistency: Although SSDs offer significantly lower latency and

higher throughput than HDDs due to the absence of mechanical components, they

suffer from severe performance variability. Compared to their HDD counterparts

they are much faster, but their tail latency is more unstable due to background oper-

ations such as garbage collection, wear leveling, and error handling. Optimizing the

storage stack for flash-specific challenges is crucial to achieving peak performance.

• Aging resilience: The drive for high storage density has caused the underlying

hardware for the flash memory-based solid state drive to become increasingly un-

reliable [79], and the current state-of-the-art approaches implement performance-

sacrificing techniques to prevent data loss, leading to fail-slow symptoms where the

components continue to function but experience reduced performance [80]. With the

decreasing endurance and reliability of modern SSDs [68], this problem becomes even

more critical.

• Lifetime management: The finite program/erase (P/E) cycles of NAND flash ne-

cessitate sophisticated wear leveling and garbage collection strategies. Modern flash

memory cells can withstand only a few hundred program-erase cycles, and wear lev-

eling (WL) techniques have traditionally been used to distribute wear evenly across

flash memory blocks. Recent study [65, 108] uncovers that conventional WL methods

are far from perfect: they are not only limited in effectiveness but can also produce

counter-productive results in modern SSDs.

• Sustainability under heterogeneity: Modern SSDs exhibit significantly greater

heterogeneity compared to traditional hard disk drives. However, the overall archi-

tecture of existing all-flash array systems is built around the assumption that the

underlying storage components are homogeneous [66]. This mismatch leads to ineffi-

ciencies and under-utilization, exacerbating the carbon footprint of storage systems.
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1.3. Research Goal and Philosophy

The evolution of storage technologies, particularly in NAND flash-based solid-state drives

(SSDs) and emerging storage devices, has introduced unprecedented opportunities for im-

proving performance, reliability, and efficiency in modern computing systems. However,

the existing system software stack—-ranging from the block I/O subsystem and device

drivers to the file system and RAID layers—-has not kept pace with these hardware ad-

vancements. This misalignment creates a significant barrier to fully exploiting the capabil-

ities of modern storage devices, resulting in significant under-utilization and performance

loss in storage systems.

This dissertation is grounded in the research philosophy that a small amount of the

right information, strategically infused across system layers, can unlock dispro-

portionate performance benefits. Rather than exposing the full device complexity to

the software layers, my approach advocates for a lightweight, information-driven method-

ology. Specifically, my research goal is to selectively imbuing minimal yet meaningful

knowledge about the underlying storage devices into various layers of the I/O

stack, thereby enabling more efficient, adaptive, and high-performance storage system be-

havior.

This research philosophy is reflected throughout the dissertation in the design of various

layers within the storage stack (shown in Figure 1):

• At the device level, the Fast-Forwardable SSD (FF-SSD) aging framework lever-

ages machine learning to predict future wear-out states, providing insights that guide

upper-layer decisions. Furthermore, an in-depth analysis of wear leveling technique

reveals inefficiencies in current implementations and challenges the traditional fixed-

capacity abstraction of storage devices.



5• At the file system level, the Capacity-Variant Storage System (CVSS) incorpo-

rates awareness of device aging, allowing it to dynamically adjust the logical capac-

ity exposed to the system. This adaptation helps mitigate performance degradation

and addresses fail-slow symptoms, which are commonly observed in traditional flash-

based storage systems.

• At the RAID layer, the Placement-Asymmetric RAID (paRAID) introduces a

heterogeneity-aware architecture that considers both device- and data-level charac-

teristics. This design enables more efficient utilization of underlying SSDs by shifting

away from conventional, symmetric RAID architectures.

By aligning storage design more closely with hardware characteristics without introducing

excessive complexity, my research aims to enable a more efficient, synergistic, and adaptive

storage ecosystem.

1.4. Contributions

This thesis makes the following contributions.

• New SSD aging framework: We build Fast-Forwardable SSD (FF-SSD), to the

best of our knowledge, the first ML-based SSD aging framework that generates rep-

resentative future wear-out states. We evaluate our design using real-world work-

loads across multiple platforms to demonstrate the usefulness of FF-SSD for SSD ag-

ing. FF-SSD is accurate (up to 99% similarity), efficient (accelerates simulation time

by 2×), and modular (can be integrated with existing simulators and emulators).

• New understandings of wear leveling: We uncover that wear leveling in SSDs

does more harm than good under modern settings where the endurance limit is in

the hundreds. To support this claim, we systematically evaluate existing wear level-

ing techniques and show that they exhibit anomalous behaviors and produce a high



6write amplification. These findings are consistent with a recent large-scale field study

on millions of SSDs. We discuss the option of forgoing wear leveling and instead

adopting capacity variance in SSDs, and show that the capacity variance extends

the lifetime by up to 2.94×.

• New interface for flash storage: We rethink the existing storage interface from

a holistic perspective by exploiting tradeoffs among capacity, performance, and reli-

ability (CPR) and designing a flexible capacity-variant interface that allows the SSD

to maintain performance while it gracefully reduces the number of exported blocks.

CVSS provides a practical solution to the growing challenges of flash storage reliabil-

ity and performance stability.

• New RAID architecture for sustainability: We study and identify the ineffi-

ciency of conventional RAID solutions when considering disk heterogeneity for mod-

ern SSDs through real system deployment. We present paRAID (placement asym-

metric RAID), to our knowledge, the first RAID architecture designed to leverage a

mix of heterogeneous SSDs to improve overall system performance and sustainability

by distributing data asymmetrically.

1.5. Organization of Dissertation

As shown in Figure 1, the remainder of the dissertation is organized as follows. Chapter

2 provides the necessary background of SSDs and flash-based storage systems. Chapter 3

proposes a learning-based SSD aging framework that generates representative future wear-

out states. Chapter 4 analyzes popular SSD lifetime management algorithms and uncovers

the inefficiencies and unintended drawbacks of wear leveling algorithms in today’s envi-

ronments. Chapter 5 presents the design and implementation of a capacity-variant storage

system. CVSS addresses the fail-slow symptoms in solid-state drives by developing a soft-
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Figure 1: Overview of research contribution and activities.

ware/hardware co-design solution. Chapter 6 introduces paRAID, a heterogeneity-aware

RAID architecture for all-flash-array systems that optimizes storage utilization and sus-

tainability. Chapter 7 summarizes the thesis, and Chapter 8 presents future research direc-

tions.
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9CHAPTER 2

Solid State Drive Basics

In this chapter, we highlight important concepts to facilitate a better understanding of the

rest of the dissertation. We first discuss the basics of a NAND flash cell, the building block

of almost every solid state drive, and then provide a summary of how SSDs work.

2.1. Basic Flash Operations

Flash memory operations involve three fundamental low-level commands: Read, Erase,

and Program. These operations dictate how data is accessed and modified on the flash

chip.

2.1.1. Read (a Page)

The host can read any page (typically 4KiB) by issuing a read command with the appro-

priate page number. This operation is generally fast, taking tens of microseconds, regard-

less of the page’s location. Unlike traditional disk storage, flash memory provides uniform

random access.

2.1.2. Erase (a Block)

Before writing to a page, the entire block containing that page must first be erased. The

erase operation resets all bits in the block to 1, effectively destroying any existing data.

Therefore, any important data within the block must be backed up before issuing an erase

command. This operation is relatively slow, typically taking a few milliseconds. Each flash

memory block can only endure a fixed number of erase operations.



102.1.3. Program (a Page)

Once a block has been erased, a program command can be issued to write data to a spe-

cific page. This process modifies certain bits from 1 to 0 as required. Programming a page

is faster than erasing a block but slower than reading a page, typically taking hundreds of

microseconds.

These three operations define the core behavior of flash memory and influence storage per-

formance and management strategies.

2.2. SSD Architecture

Figure 2: An overview of SSD architecture.

Figure 2 shows an overview of SSD. An SSD NAND package is structured into dies, planes,

blocks, and pages. Due to the erase-before-write characteristic of NAND flash, data

cannot be directly overwritten. Erase operations occur at the granularity of erase blocks

(EBs), which range from tens to hundreds of megabytes, whereas write operations are per-

formed at the page level (e.g., 16KiB, 48KiB, 64KiB).



11To manage overwrites, the Flash Translation Layer (FTL) follows a three-step process: (1)

writing the updated data to a free page, (2) marking the previous data as invalid, and (3)

updating metadata to reference the new location. This metadata maps logical addresses

to physical addresses in NAND storage. Over time, writing to logical addresses generates

invalid pages, which must be reclaimed through a process known as Garbage Collection

(GC).

2.3. Flash Translation Layer

Figure 3: Generic solid-state drive (SSD) controller architecture.

This section focuses on the key components of a typical SSD controller and how it inter-

faces with the NAND flash memory [13]. Figure 3 illustrates the fundamental components

of an SSD. A brief description for each key block is provided below.



122.3.1. L2P Mapping Table

The host accesses the SSD through Logical Block Address (LBA). Each LBA corresponds

to a sector, typically 512 bytes in size. Within the SSD, the flash page serves as the ba-

sic unit for accessing flash memory between the controller and the flash memory. Every

time a write request is issued, the SSD controller allocates a physical flash memory page to

store the host data, and this mapping is recorded within the SSD. This mapping ensures

that when the host needs to read data, the SSD knows where to retrieve the corresponding

data from the flash memory.

2.3.2. Host Interface

The SSD controller’s host interface is typically built to comply with established indus-

try standards. Different interfaces are designed to meet varying system architectures and

performance needs. Some of the most widely used interfaces include SATA, SD, USB,

PATA/IDE, and PCIe.

2.3.3. SMART (Self-Monitoring, Analysis, and Reporting Technology)

Modern SSD controllers typically incorporate the S.M.A.R.T. [124] function, which tracks

and logs various performance and health metrics of the SSD and its memory. One key fea-

ture is the ability to monitor the remaining percentage of endurance cycles, a crucial factor

in estimating the SSD’s remaining lifespan.

2.3.4. Wear Leveling

As shown in Figure 4, wear leveling is a technique used to distribute write cycles evenly

across the available NAND blocks. Since each NAND block has a finite number of pro-

gram/erase (P/E) cycles, repeatedly writing to a single block would rapidly exhaust its en-

durance. To prevent premature wear, the SSD controller employs a wear leveling algorithm

that monitors and balances write operations across different physical NAND blocks.
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Figure 4: NAND Flash Wear-Leveling Comparison.

2.3.5. Read and Program Disturb

As NAND flash technology advances with increasingly smaller trace widths, maintaining

data integrity becomes more challenging. Read and Program Disturb occur when read or

write operations induce unintended electrical interference in adjacent cells, potentially al-

tering their stored values. To mitigate this effect, SSD controllers employ specialized algo-

rithms and, in some cases, additional circuitry to ensure data reliability.

2.3.6. Buffer/Cache

SSD controllers typically incorporate a high-speed SRAM/DRAM cache buffer to tem-

porarily store read and write data, improving performance and efficiency. However, since

this cache relies on volatile memory, data can be lost if power is unexpectedly interrupted.

It is common to have both internal caches within the controller chip and external RAM

cache chips to improve performance.
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At the core of every SSD controller is its primary processing unit, which can be either a

CPU or an RISC processor. The processor plays a crucial role in determining the overall

efficiency and functionality of the SSD.

2.3.8. ECC Engine

Error Correction Code (ECC) is a key component in modern SSDs to detect and correct

errors in stored data. ECC algorithms can recover a specific number of corrupted bits

within each data block, ensuring data integrity. Without ECC, the use of low-cost con-

sumer flash storage, which relies on less reliable memory, would not be feasible.

2.3.9. Write Abort

Write Abort occurs when power is unexpectedly lost during a write operation to NAND

flash. Without a backup power source, such as a battery or SuperCap-supported cache,

data in transit is at risk of being lost. More critically, it is essential to protect the SSD’s

internal metadata and firmware from corruption. To address this, Write Abort circuitry

is commonly implemented in enterprise-grade SSDs, ensuring data integrity and system

reliability.

2.3.10. Defect Management

Each SSD requires a strategy to handle faulty memory blocks and emerging defects. When

NAND blocks are no longer functional, the SSD controller must take corrective action. In

certain instances, a spare sector may be used to substitute the defective block. In cases of

inadequate controller design, the SSD may fail. Different controllers may employ different

approaches to manage bad flash memory blocks.
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2.4. Garbage Collection and Write Amplification

Garbage Collection (GC) is initiated when the SSD has a limited number of free blocks

available (i.e., lower than its predefined threshold). During this process, valid pages from

an erase block are relocated to a new location, allowing the now completely invalid block

to be returned to the free pool. Once in the free pool, an erase block can be erased and

repurposed for incoming data writes.

Since garbage collection involves reading, migrating, and erasing data, it is a resource-

intensive operation. The energy consumption of an SSD is directly influenced by the fre-

quency and duration of garbage collection activities, making it a critical factor in SSD per-

formance and longevity.

2.4.1. Device-Level Write Amplification (DLWA)

Device-Level Write Amplification (DLWA) measures the ratio of data written internally

within the SSD to the data actually written by the host. It quantifies the additional write

overhead caused by internal SSD operations such as Garbage Collection. DLWA is calcu-

lated using the formula [3]:

DLWA =
Total NAND Writes
Total SSD Writes

(2.1)

2.4.2. Application-Level Write Amplification (ALWA)

Application-Level Write Amplification (ALWA) represents the ratio of data written to the

SSD to the actual data written by the application. It accounts for file system and system-

level write overhead before reaching the SSD. ALWA is given by [3]:
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ALWA =
Total SSD Writes

Total Application Writes
(2.2)

The additional read and write operations caused by garbage collection can interfere with

the execution of other SSD commands. In addition, the increased NAND operations from

data relocation accelerate wear on the NAND media, reducing its lifetime.

For instance, a DLWA of 3 means that for every 4KiB of user data written, the Flash Trans-

lation Layer (FTL) performs an additional 8KiB write due to garbage collection. Since

NAND flash has a limited number of Program and Erase (P/E) cycles, a DLWA of 3 sig-

nificantly shortens the SSD’s lifespan to one-third.

Device-Level Write Amplification significantly affects various SSD performance metrics,

including Quality of Service (QoS), bandwidth, endurance, reliability, and sustainability.

Due to its broad impact, DLWA is commonly used as a key indicator for monitoring SSD

efficiency.
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Generating Realistic Wear Distributions for SSDs

3.1. Introduction

Understanding the aged behavior of SSDs (solid-state drives) is important because the

errors in SSDs increase over time as flash memory wears out [14, 115]. Errors not only

corrupt the data the SSD stores (silent data corruption) [8, 41], but also induce fail-slow

symptoms where performance degrades as the SSD attempts to correct and prevent these

errors [46, 79].

However, no existing SSD development frameworks (such as Amber [44], FEMU [95], and

MQSim [156]) consider aging in their design. Aging through pre-conditioning is prohibitively

expensive as it takes years’ worth of simulation time to reach that aged state. Alterna-

tively, the initial erase count can be pre-set to a higher non-zero value, but this will be an

unrealistic wear state because modern SSDs cannot effectively even the wear with its wear

leveler [108].

In this work, we propose Fast-Forwardable SSD (FF-SSD), a machine learning-based SSD

aging framework that generates representative future wear-out states. Within a typical

SSD model, many components perform repetitive work. For example, the garbage collec-

tor may keep selecting several hot blocks as the victim over a period of time. Similarly, the

trigger condition of the wear leveler is computed regularly during the lifetime of the SSD.

Thus, the behavior within an SSD can be learned from past executions to predict the fu-

ture SSD-internal state.

However, the challenges of using a machine learning approach for making online, fine-

grained inferences on SSD internal states are two-fold. First, the inference must be ac-
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sources with background operations such as garbage collection, wear leveling, error han-

dling, and data scrubbing. These internal complexities need to be learned to make the

inference highly accurate. Second, the inference must be fast and efficient relative to the

simulation time; otherwise, it either brings negligible benefits or even prolongs the over-

all process. Deep learning models like convolutional neural network or recurrent neural

network would introduce more complexities and may result in a slow training and infer-

ence performance. To address these, FF-SSD incrementally builds a lightweight regression

model for each block to capture the changes in SSD-internal states and predicts their tra-

jectory using the information from past executions. This model would approximate the

future wear state of an SSD device if the same workload were to be repeated, resulting in

a faster simulation time.

We present the design, implementation, and usage scenarios of the FF-SSD framework1.

We build FF-SSD with the following quality attributes: (1) accuracy by generating realistic

distributions that match up to 99% of the full simulation results, (2) efficiency by acceler-

ating the simulation by 2× to reach a desired aged state, and (3) modularity by building

the prediction module that can be integrated across multiple platforms. We evaluate our

design using real-world workloads [78, 91, 172] across multiple platforms [34, 44, 95] to

demonstrate the usefulness of FF-SSD for SSD aging.

3.2. Motivation and Related Works

We begin by asking a basic question: does the wear state really matter in SSDs? We then

describe the irregularity of the SSD’s wear, and briefly discuss related works.

Fail-slow symptoms. Previous works [46, 79] have shown the fail-slow symptoms mani-
1FF-SSD is available at https://github.com/ZiyangJiao/FF-SSD.

https://github.com/ZiyangJiao/FF-SSD
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(a) The relationship between RBER and erase. (b) The irregularity of block erase.

Figure 5: Figure 5a shows the error rate as the erase count increases for three flash mem-
ory chips. Figure 5b shows the changes in erase count for the hottest block and the coldest
block under three real-work workloads [78], WBS, DAP-DS, and LM-TBE, with a 256GB
SSD. The end of the line indicates the failure of that device.

fest in SSDs as they correct and prevent errors whose rate naturally increases due to wear.

Figure 5a shows the relationship between raw bit error rate (RBER) and erase count for

three flash memory chips derived from RBER models [79]. As an SSD ages and wears out,

the error rate increases, which in turn, degrades the performance [79]. The bit error rate

caused by wear-out degrades the performance of the drive. However, it is not only I/O

writes that cause programs and erases. Any SSD-internal housekeeping such as garbage

collection and wear leveling perform additional erases that wear out the device [79]. Flash

memory manufacturers specify how many times a flash memory block can be erased before

turning bad [130], also known as endurance limit or P/E cycles. This is because writing

to an SSD induces programs (and eventually erases) that weaken the non-volatile memory,

leading to a wear-out. An SSD typically maps out these blocks so that they will no longer

be used [115, 130]. When too many blocks become bad, the SSD cannot maintain the logi-

cal capacity, and the entire storage device becomes unusable.

Irregularity of block erase count. An SSD consists of hundreds of thousands of flash

blocks and they have different erase count trajectories during the lifetime of the device.
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real-work workloads [78] (WBS, DAP-DS, and LM-TBE), for a 256GiB SSD. The end

of the line indicates the failure of that device. As shown in the figure, blocks behave dis-

tinctly across three workloads, and the erase counts change at different rates through SSD’s

lifetime, demonstrating the irregularity of erasure behavior within the SSD. Even though a

wear leveler is used [25], the SSD cannot implement perfect wear leveling, similar to the

observation from a field study on millions of SSDs [108].

Inferring the overall wear distribution within an SSD is hard, given the internal intricacy

of SSDs. Any SSD-internal activities explicitly or implicitly increase the wear. For exam-

ple, garbage collection will be triggered when the amount of free space decreases to a pre-

defined threshold. A batch of victim blocks will be erased depending on the GC policy.

The greedy approach [168] targets the blocks containing minimum amount of valid data,

while the cost-benefit approach [140] selects the ones with the highest cost-benefit value.

Wear leveling, on the other hand, introduces additional block erasure by performing data

relocation to equalize the erase count. SSD reliability enhancement techniques such as in-

ternal redundancy, data scrubbing can also accelerate the wear.

File system aging. Although there are existing research and tools for file system ag-

ing [1, 73, 148], these cannot be directly applied to SSD aging. File system aging tools

generate a fragmented state of logical block layouts, but SSD aging needs to model the

physical aging of blocks as the reliability properties of a young and an old block are differ-

ent. Preconditioning an SSD is more akin to file system aging by populating and invalidat-

ing the address space [149], and cannot sufficiently age the device to an end-of-life state.

Machine learning for simulation. We find two prior works that use machine learning

to accelerate simulations: DEVS (Discrete EVent Specification) [142] and CML (Continu-
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Figure 6: FF-SSD overview. FF-SSD starts from actual (1) simulation to (2) observe the
SSD’s internal activities, then (3) train lightweight regression models to (4) predict the
trajectory for the block’s wear out, and (5) project SSD states based on the prediction re-
sults.

ous Machine Learning) [135]. At a high-level, DEVS considers multiple model candidates

and selects the best one for prediction. This model, however, is not always updated be-

fore each prediction stage. On the other hand, CML continuously incorporates the latest

data to update its model. However, both are not designed for SSD aging and ignore the

complexity of modern SSDs. CML focuses on performance estimation rather than gen-

erating internal states, and DEVS is for discrete-event modeling and simulation that as-

sumes that in between events (i.e., external I/O requests), the state of the system does not

change [157].

3.3. System Design

We first describe the overall process of learning the wear-out behavior of the SSD to pre-

dict the future state, and discuss further optimizations to improve the efficiency of our

tool.

3.3.1. Overall Architecture

Our generative process consists of five phases: (1-2) simulation and observation, (3) train-

ing, (4) prediction, and (5) projection, as shown in Figure 6.

Simulation and observation. FF-SSD starts from actual simulation during a workload

sample to observe the SSD’s internal activities, and collect information that will later be
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tures will be recorded at the end of every observation period: (1) the block identifiers,

(2) the current erase count, for each block associated with its identifier (3) the observa-

tion time, and (4) the write amplification factor during this observation period. We fil-

ter out features that may seemingly look important but in reality, are not for the predic-

tion. These excluded features relate to the workload characteristics observed from the host

side such as workload hotness, access footprint, and I/O size, as their effect on erase count

heavily depends on the implementation of the flash translation layer (FTL). The selected

features are logged throughout the simulation.

Training. Once enough workload has been sampled, we use the gathered data to build a

lightweight regression model for each block and predict the future state. Specifically, the

system will extract and normalize the time-series data from the observation and train the

model for each block. The main challenge here is to decide how much history should be

used for the training process. Since changes in wear for each block are dynamic during the

SSD’s lifetime, most recent activities are more relevant to the future states. We thus filter

out stale information and use only the latest history. These models are updated before

each prediction, so they can learn the most recent trend within the SSD.

Prediction. The training phase generates the weights in the models that will be tem-

porarily kept in FF-SSD. For each block, the model is then activated to infer its future

erase count based on the acceleration factor (AF ), dictated by the user. In this work, we

define AF as the ratio of full workloads to the simulated workloads, which can be com-

puted using formula:

AF =
simulated+ predicted

simulated
(3.1)
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derlying platform and A = ∞ means there is no actual simulation involved. Thus, there is

an inherent tradeoff between prediction accuracy and acceleration efficiency. An aggressive

acceleration saves more time to reach an aged state, but at the cost of decreased accuracy

compared to moderate acceleration.

Projection. Finally, these generated future states are fed back into the simulation, where

it will continue to sample and run workloads. The relevant components are also updated

within the platform based on the new state. These stages will repeat until the SSD reaches

its desired age.

3.3.2. Enhancing Efficiency

Since we approach by incrementally building multiple lightweight regression models for all

blocks, the prediction overhead is proportional to the number of blocks. Thus, reducing

the number of blocks to model and infer would improve the efficiency. We next present an

analytic approach to further improve inference efficiency based on distribution modeling.

We assume that the wear distribution of blocks adheres to an underlying measurable dis-

tribution ρ(·), such as normal distribution. We then divide all blocks into several groups

based on wear conditions (e.g., quantiles) and build one model for each group. Then we

estimate the future wear for each block according to the prediction result of these groups

and the density function that models the overall underlying distribution.

In this work, we observed that the discrete wear distribution can be almost perfectly matched

by a skew-normal distribution in most cases, with skewness α, location µ, and scale pa-

rameter σ. Figure 7 shows the histogram of erase counts under WBS workloads, overlaid

with the approximating skew-normal distribution with α = 0.75, µ = 310, σ = 15.1.

Since no statistical method can affirm whether two distributions are the same, we run Kol-
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Figure 7: Skew norm fit to the measured distribution. The red line indicates the approxi-
mating skew-normal distribution, matching with the observed distribution.

mogorov–Smirnov goodness-of-fit test to check if the observed distribution fits our statis-

tical model. We fail to reject the null hypothesis that the wear distribution matches the

skew-normal distribution on 105 samples with p > 0.1.

3.4. Evaluation

In this section, we first evaluate the effectiveness of FF-SSD for SSD aging, then explore

the optimal point along the tradeoff between accuracy and efficiency. Table 5 outlines the

system configurations for our evaluation (FTLSim [34], Amber [44], and FEMU [95]).

For the workload, YCSB-A is from running YCSB [172], VDI is from a virtual desktop

infrastructure [91], and the remaining workloads are from Microsoft production servers and

Microsoft enterprise servers [78]. The traces are modified to fit the logical capacity of the

SSD, and all the requests are aligned to 4KiB boundaries. We use a fully simulated result

(AF = 1) as the baseline and compare our work against two prior works, DEVS [142] and

CML [135].



25

Table 1: Platform specific configurations.

PC platform

CPU name i7-9700 Frequency 3.00GHz
Core number 8 Memory 32GiB
OS Ubuntu ISA X86_64

FTLSim

Page per block 256 Physical capacity 284GiB
Page size 4KiB Logical capacity 256GiB
Endurance limit 500 Over-provisioning 0.11
Wear leveling PWL [25] Garbage collection Greedy

Amber

Channels 8 Page size 4KiB
Packages per channel 4 Physical capacity 284GiB
Die per package 2 Logical capacity 256GiB
Plane per die 2 Over-provisioning 0.11
Block per plane 1136 Garbage collection Greedy
Pages per block 512 Wear leveling Var-based

FEMU

Channels 8 Page size 4KiB
Luns per channel 8 Physical capacity 16GiB
Planes per lun 1 Logical capacity 15GiB
Blocks per plane 256 Over-provisioning 0.07
Pages per block 256 Garbage collection Greedy
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(a) DTRS (b) WBS

(c) YCSB-A (d) VDI

Figure 8: SSD aging until failure on FTLSim. FF-SSD achieves the highest accuracy (91%
– 97%) compared to DEVS (60% – 93%) and CML (48% – 84%). The accuracy is com-
puted using the mean difference in erase counts across all blocks relative to their real val-
ues from the full simulation.

3.4.1. Effectiveness of FF-SSD

FTLSim

We first examine the effectiveness of FF-SSD on FTLSim. We configure a 256GiB SSD

and set the acceleration factor (AF ) to be 1.5. We set the endurance limit to 500 for each

block and run until the number of bad blocks exceeds its over-provisioning. In this work,

the accuracy is computed using the mean difference in erase counts across all blocks rel-

ative to their real values from the full simulation. Figure 8 shows our experiment results:

with AF = 1.5, FF-SSD continuously learns the behavior within the SSD using the infor-
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(a) DTRS (b) WBS

(c) DAP-DS (d) RAD-AS

Figure 9: SSD aging with 600 iterations of the workloads on Amber. The accuracy
achieved by FF-SSD (88% – 99%) outperforms DEVS (83% – 99%) by a small margin but
by a large margin for CML (40% – 60%).

mation from the past two iterations of the workload, and then predicts the wear state after

one additional iteration. FF-SSD generates the final states of SSD, and achieves the highest

accuracy compared to DEVS and CML.

For FF-SSD, we observe that the average accuracy is 94% across all workloads, and as

high as 97% for VDI. On the other hand, the overall accuracy for DEVS and CML ranges

from 60%–93% and 48%—83%, respectively. The lowest accuracy for FF-SSD is 91% un-

der YCSB workloads, while DEVS and CML only achieve 60% and 48%, underperforming

our design by a large margin. Essentially, we accelerate the simulation by 50% with this

workload sampling configuration and the predicted distribution closely follows the fully
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Amber

We next study the performance of FF-SSD on Amber and apply a more aggressive acceler-

ation factor. Specifically, we generate the wear distributions by applying 600 iterations of

the workloads with AF = 2 and compare them with the baseline. However, the endurance

limit is set to be sufficiently large at 100,000, the default value of Amber.

Figure 9 shows the experiment results on Amber. We observe that FF-SSD outperforms

DEVS and CML for all the workloads we evaluated. The accuracy ranges from 88% (for

WBS) to 99% (for DAP-PS), with a mean of 93%. On the other hand, the accuracy achieved

by CML only ranges from 40% (for RAD-AS) to 60% (for WBS), with a mean accuracy

of 49%. DEVS presents different behavior on Amber compared to its results on FTLSim.

DEVS delivers a similar accuracy with FF-SSD on Amber, ranging from 83% (for DTRS)

to 99% (for DAP-PS), with a mean accuracy of 91%.

To further investigate why DEVS performs well on Amber while not on FTLSim, we find

that apart from the implementation details of FTLSim and Amber, these two platforms

deployed different wear leveling policies. PWL [25] is used in FTLSim, which adopts an

adaptive threshold-driven approach for selecting victim blocks for erases; on the other

hand, Amber applies a predefined threshold for the uneven factor to determine the trigger

condition. We run another experiment to study how the wear leveling policy affects the

inference accuracy. Figure 10 shows the result on FTLSim after applying 600 iterations

of DTRS and WBS workloads without wear leveling. Without wear leveling in FTLSim,

DEVS performs similarly to FF-SSD, indicating that the performance of DEVS is sensitive

to the FTL algorithm.
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(a) DTRS (b) WBS

Figure 10: Performance comparison of FF-SSD and DEVS on FTLSim without WL. DEVS
presents a similar performance to FF-SSD.

FEMU

The previous experiments show the performance of FF-SSD on SSD simulators. To further

improve usability, we turn to study the effectiveness of FF-SSD on FEMU, a state-of-the-

art SSD emulator. We use FEMU to emulate a 16GiB SSD and generate the wear distri-

bution after 50 iterations of two Microsoft enterprise server workloads, ME-TPCC and

ME-TPCE [78]. The acceleration factor is set to be 2, and all I/O requests are issued by

btreplay to the underlying SSD.

Figure 11 shows the experiment results on FEMU. FF-SSD achieves the highest accuracy

(93% for TPCC and 91% for TPCE) compared to DEVS (79% for TPCC and 60% for

TPCE) and CML (18% for TPCC and 11% for TPCE). Moreover, the wear states gen-

erated by FF-SSD align with the overall shape of our baselines, while DEVS and CML

present apparent discrepancies. Comparing this to the previous results, we find that CML

underperforms other methods when applied to SSD aging and DEVS only works well un-

der a particular configuration. On the other hand, FF-SSD generates a more realistic distri-

bution on all the platforms while accelerating the emulation by 2×.
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(a) TPCC (b) TPCE

Figure 11: SSD aging with 50 iterations of the workloads on FEMU. FF-SSD delivers a
higher accuracy (93% for TPCC and 91% for TPCE) than DEVS (79% for TPCC and
60% for TPCE) and CML (18% for TPCC and 11% for TPCE).

3.4.2. Accuracy and Efficiency Tradeoff

In this section, we quantitatively analyze how different acceleration factors affect the over-

all accuracy and then provide a conservative AF to balance this tradeoff.

We apply four different acceleration factors (1.5, 2, 3, and 4) to FF-SSD and generate the

wear states of running 100 iterations of LM-TBE and MSN-BEFS workloads on FTLSim.

The performance comparison is shown in Figure 12. Overall, the accuracy is similar for

AF = 1.5 and AF = 2 and drops distinctively when AF is greater than 2. Specially, for

LM-TBE, the accuracy ranges from 56% (AF = 4) - 91% (AF = 1.5). The accuracy de-

creases by 4% from AF = 1.5 to AF = 2, while 19% from AF = 2 to AF = 3. Similarly,

for RAD-BEFS, the accuracy is 98% for AF = 1.5 and 97% for AF = 2, and decreases

by 13% for AF = 3 and 20% for AF = 4. Given the experiment results above, we con-

clude that FF-SSD generates an accurate distribution when at least half of the workloads

are observed (AF ≤ 2) and may occur more errors beyond that point.
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(a) LM-TBE (b) RAD-BEFS

Figure 12: The tradeoff between aging accuracy and efficiency. FF-SSD generates an accu-
rate estimation when at least half of the workloads are observed (AF ≤ 2) and occur more
errors beyond that point.

3.5. Conclusion and Limitations

We present Fast-Forwardable SSD, to the best of our knowledge, the first ML-based SSD

aging framework that generates representative future wear-out states. We examine the ef-

fectiveness and usefulness of FF-SSD across state-of-the-art SSD development platforms.

Our evaluations show that FF-SSD generates the desired age states of SSDs with high ac-

curacy under real-world workloads. This work suggests many promising directions, and our

immediate plan includes improving the accuracy through adaptive acceleration and pre-

dicting the wear states on real SSDs.

3.5.1. Improving Accuracy through Adaptive Acceleration.

We plan to implement outlier detection [126] on WAF to further improve accuracy and

achieve adaptive acceleration control. WAF is defined by the increased writes caused by

the background processes, measured as the ratio of total internal to external writes. A sta-

ble WAF over a long observation is an indicator that SSD is in a steady-state (i.e., the

activeness of SSD background operations keeps at the same level). In this case, FF-SSD

submits the estimation with high confidence and a more aggressive AF should be applied
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the past observations, indicative of the changes in host-side workloads or configurations,

FF-SSD should adopt a moderate AF or even revoke the estimation to avoid high inference

error.

Moreover, introducing outlier detection would also make FF-SSD adapt to dynamic work-

loads. While the past might be a good indicator of the future in some workloads, it may

be not the case in many realistic settings. The changes in external workloads will be re-

flected by SSD internal activities, and finally detected by performing outlier detection al-

gorithms. Once an outliner is determined, FF-SSD should skip the next prediction or roll

back to a previous state.

3.5.2. Predicting on Real Devices.

The current design have only been validated on simulated environments. Our work would

have greater applicability if we extend our validation to real SSDs where their internal de-

tails and states such as FTL logic and erase counts are not accessible. For these cases, we

plan to use the information available through the SSDs’ SMART (Self-Monitoring, Anal-

ysis, and Reporting Technology) interface, such as percentage used, available spare, and

error detection count to predict SSDs’ future health. Users may not be able to get the full

distribution as in the simulation environment, but more general information can be in-

ferred. For example, the changes in percentage lifetime used can be used to estimate how

much host data the SSD can sustain under the current workload before its failure.
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Wear Leveling in SSDs Considered Harmful

4.1. Introduction

NAND flash-based solid-state drives (SSD) are an integral part of today’s computing sys-

tems, used in mobile and embedded devices to large-scale data centers. However, flash

memories wear out as they are programmed and erased, and progressively exhibit more

errors [14, 115]. Furthermore, once used beyond an endurance limit, memory cells may

not behave correctly and are considered bad [130]. Thus, minimizing the total amount of

writes that causes programs and erases in the SSD is paramount in managing the over-

all lifetime [60, 93, 105]. However, this is becoming increasingly challenging as the en-

durance limit of flash memory has been steadily decreasing, as shown in Figure 47. This

figure plots the endurance limit for a wide variety of SSDs over the past several years, es-

timated by dividing the amount of writes the SSD can sustain (in the form of TBW, ter-

abytes written) by the logical capacity of the device. This downward trend is a result of

trading reliability for higher density [14, 45, 79], and a modern flash memory cell can only

withstand up to a few hundred programs and erases.

Wear leveling (WL) techniques seek to equalize the amount of wear within the SSD so

that most, if not all, cells reach the endurance limit prior to the end of the SSD’s life-

time [20, 25, 27, 42]. While there are different approaches to implementing WL (from

static [20, 25, 42] to dynamic [27]), the underlying goal is to use younger blocks with fewer

erases more than the older blocks. Static wear leveling techniques [20, 25, 42], in particu-

lar, proactively relocate data within an SSD, thereby incurring additional write amplifica-

tion for the sake of equalizing the number of erases. In other words, WL techniques incur
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Figure 13: The estimated endurance limit of various SSDs in the past years. We estimate
the endurance limit by dividing the SSD’s TBW (terabytes written: the total amount of
writes the SSD manufacturer guarantees) by the logical capacity. The y-axis is shown in
log-scale.

additional wear-out to maximize the total amount of writes that the SSD can sustain.

We argue that the conventional approach of wear leveling is ill-suited for today’s SSDs for

the following three reasons. First, as Figure 47 shows, the endurance of flash memory cells

has been decreasing to a level where only a few hundred program-erase cycles would wear

them out. Because each WL decision also contributes to wear-out due to data relocation,

suboptimal decisions for WL cause more harm than good. Secondly, we find that WL algo-

rithms produce a counter-productive result where the erase counts diverge, increasing the

spread rather than reducing it. We observe this when the workload’s access footprint is

large and its access pattern is skewed, as the WL attempts to proactively move data that

it perceives to be cold into old blocks. Lastly, WL algorithms are a double-edged sword in

which achieving a tight distribution of erase count comes the cost of high write amplifica-

tion. Although adaptive WL approaches [25, 120] exhibit a low write amplification while
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end of life and significantly accelerate the wear-out.

Instead of designing a new wear leveling algorithm that patches these performance issues,

we quantify the benefits of our work on capacity variance in SSDs. Unlike a traditional

SSD that exports a fixed capacity, a capacity-variant SSD reduces its capacity gracefully

as flash memories become bad. The fixed capacity interface, the current paradigm for all

storage devices, is built around traditional hard disk drives that exhibit a fail-stop behav-

ior2 when their mechanical parts crash [136]. However, SSDs fail partially as flash memory

blocks are the basic unit of failure, and mapping out failed bad blocks is an inherent re-

sponsibility of the SSD firmware as manufacture time bad blocks exist [130]. Wear leveling

exists to maintain the fixed capacity interface and emulate a fail-stop behavior when the

underlying technology is actually fail-partial. Thus, it is necessary to revisit the efficacy of

wear leveling and the validity of a fixed capacity interface in a modern setting with a low

endurance limit.

In this work, we evaluate three representative wear leveling techniques [20, 25, 42] in the

traditional fixed capacity interface and show that their write amplification factors can

reach up to 5.4. We also uncover that WL algorithms can produce opposite results where

the variance of the erase count increases as WL becomes more active. We then evaluate

the presence and absence of WL in both fixed-capacity and capacity-variant SSDs. Our ex-

perimental results show that capacity variance allows up to 84% more writes to the SSD

with wear leveling. Interestingly, capacity variance without WL allows up to 2.94× more

writes, demonstrating that WL techniques can accelerate the overall wear state signifi-

cantly.
2In this context, a fail-stop model means that the storage device as a whole is either working or not,

and its failure state can immediately be made aware by other components of the system.
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Figure 14: SSD controllers employ wear leveling algorithms to extend the device lifetime,
which equalize the number of erases by migrating hot data (from older blocks) to younger
blocks

The contributions of this work are as follows:

• We evaluate representative wear leveling algorithms and show that they exhibit high

write amplification and undesirable results in modern SSD configurations. (§ 4.3)

• We qualitatively describe the benefits of capacity variance for SSDs and discuss the

necessary modifications in the system and storage management. (§ 4.4)

• We quantitatively demonstrate that a capacity-variant interface can significantly ex-

tend the SSD’s lifetime by evaluating the presence and absence of wear leveling al-

gorithms in both fixed and variable capacity SSDs using a set of real I/O workloads.

(§ 4.5)

4.2. Motivation

In this section, we provide the challenges in managing lifetime in SSDs, describe some of

the typical wear leveling algorithms, and then qualitatively describe their shortcomings

and side effects.



374.2.1. Managing the SSD lifetime

The overall architecture of a typical SSD is shown in Figure 14. The flash translation layer

(FTL) hides the peculiarities of the underlying flash memory and provides an illusion of

a block storage device [39]. Some of these peculiarities are as follows: (1) Flash memory

prohibits in-place updates. Because all updates must be out-of-place, data are written to

a new location and the mapping table associates the logical address with the physical lo-

cation. (2) The program operation (1 → 0) and the erase operation (0 → 1) have differ-

ent granularity: a page and a block respectively. Thus, to erase a block and reclaim space

for new updates, all valid pages within the block must first be copied to another location

through garbage collection. (3) Flash memory cells wear out and eventually become unus-

able. The wear leveler aims to equalize the wear for all blocks so that blocks do not pre-

maturely wear out before the SSD’s lifetime.

An SSD’s lifetime is typically defined with a conditional warranty restriction under DWPD

(drive writes per day), TBW (terabytes written), or GB/day (gigabytes written per day) [159].

This is because writing to an SSD induces programs (and eventually erases) that weaken

the non-volatile memory, leading to a wear-out. Flash memory manufacturers specify how

many times a flash memory block can be erased before turning bad [130]. Symptoms of

these bad blocks include flash memory operation errors and high bit error rates, and an

SSD typically maps out these blocks so that they will no longer be used [115, 130]. When

too many blocks become bad, the SSD cannot maintain the logical capacity, and the entire

storage device becomes unusable. As such, managing the number of writes to the SSD is

critical in guaranteeing the lifetime.

However, it is not only I/O writes that cause programs and erases. Any SSD-internal house-

keeping such as garbage collection and wear leveling perform erases that wear out the de-

vice [79]. This additional amount of writes in relation to the amount external I/O write
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Figure 15: The relationship between various static wear leveling algorithms [20, 22, 23, 25,
42, 82, 98, 120]. Solid arrows indicate an enhancement from the previous algorithm (top-
down implies the chronology), and the dotted lines indicate that they were evaluated in
their respective paper.

is referred to as write amplification (WA), and minimizing WA benefits not only the life-

time, but also the performance [79]. However, achieving this is not as straightforward. For

garbage collection, greedily selecting the minimum amount of data to copy leads to unex-

pected inefficiencies [140], and wear leveling directly opposes WA as it causes additional

data relocation to equalize the erase count.
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(a) Without WL (b) Moderate WL (c) Aggressive WL (d) Incorrect WL (e) Ideal WL

Figure 16: Pictorial description of wear leveling behavior. Given a distribution of erase
count without wear leveling (WL) in Figure 16a, Figure 16b shows the spread given a typ-
ical, moderately active WL. However, an overly aggressive WL accelerates the erase count
as shown in Figure 16c, and an incorrectly behaving WL even causes an increased spread,
shown in Figure 16d. Ideally, WL should achieve a distribution similar to Figure 16e.

4.2.2. Wear Leveling Algorithms

Figure 15 describes the relationship between different wear leveling algorithms [20, 22, 23,

25, 42, 82, 98, 120].

One naïve implementation called hot-cold swap simply swaps the data stored in the oldest

block and the youngest block once the difference in erase count exceeds some predefined

threshold [82]. For example, as shown in Figure 14, the data in the young block is relo-

cated to the old block. This approach is based on the intuition that the youngest block

likely holds infrequently updated cold data while the oldest block likely has frequently up-

dated hot data. After the hot-cold swap, the youngest block will likely be erased because

of the hot data, while the oldest block with cold data will not be erased. However, the old-

est block may be selected for WL shortly after (even though it holds cold data) if the algo-

rithm incorrectly judges it to hold hot data, causing unnecessary data swaps [20].

Old Block Protection (OBP) [42] addresses this problem by maintaining a recent his-

tory of WL activities. Once a block is erased, its erase count is compared with that of the

youngest block in use: if the difference exceeds a predefined threshold, and if this just-

erased block hasn’t been involved in WL recently, the content of the youngest block will
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cold data (that was copied from the youngest block) from being involved in wear leveling

again.

Dual-Pool (DP) [20] implements a more sophisticated algorithm to prevent the same

block from partaking in WL repeatedly. It maintains two pools of blocks, hot pool and

cold pool, each intended for storing hot data and cold data, respectively. It also performs

a hot-cold swap, but between the youngest block (lowest erase count) in the cold pool and

the oldest block (highest erase count) in the hot pool. Furthermore, the pool associations

for the two blocks are also changed so that the oldest block in the hot pool becomes part

of the cold pool (since it now holds cold data). This prevents the same oldest block from

getting selected by the wear leveler. DP also implements an adaptive pool resize where

a hot pool block that contains data that became cold is moved to the cold pool and vice

versa.

Unlike OBP and DP, Progressive Wear Leveling (PWL) [25] adaptively changes the

trigger condition for wear leveling based on the overall wear state of the SSD. In the early

stage of life for the SSD (when the average erase count is low), PWL lies dormant, avoid-

ing unnecessary data copies. However, as the overall erase count increases, the active-

ness of PWL proportionally increases as well. This algorithm requires a predefined initial

threshold (THRinit) that dictates the behavior: lower THRinit causes WL to become ac-

tive early in the SSD’s life while a higher threshold delays the point in which WL becomes

active.

OBP [42], DP [20], and PWL [25] represent different types of wear leveling algorithms for

SSDs. They are often described as static WL, distinct from dynamic WL [26, 27] that

is integrated with garbage collection and block allocation. We do not consider dynamic

WL in our evaluation as it conflates the efficiency of space reclamation and effectiveness of
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4.2.3. Wear Leveling Behaviors

Wear leveling algorithms, in practice, often exhibit unintended odd behaviors that stem

from misjudging the lifetime of data in a block. Figure 16 depicts the different possible

erase count distributions, given that without WL in Figure 16a. A moderately active WL

(Figure 16b) would reduce the spread of erase count compared to that without, but an

overly aggressive WL (Figure 16c) increases the overall erase count through significant

write amplification. Hence, WL can be a double-edged sword where it is either ineffective

reducing the variance in erase count, or overly active and causes the younger blocks to be-

come as old as the others. A highly undesirable scenario is where the erase count diverges

as shown in Figure 16d, and we describe the conditions in which this occurs in § 4.3. Ide-

ally, WL should reduce the spread as shown in Figure 16e.

In the next section, we demonstrate that the existing WL algorithms show behaviors in

Figure 16, and argue that because of their shortcomings they may not be suitable for to-

day’s flash memory with a low endurance limit where each WL decision consumes an erase

count.

4.3. Performance of Wear Leveling

We evaluate the performance of three representative wear leveling (WL) algorithms: Old

Block Protection (OBP) [42], Dual-Pool (DP) [20], and Progressive Wear Leveling (PWL) [25].

OBP (TH,PT ) configuration copies the data of the youngest block to the just-erased block

if the difference between the erase counts exceeds TH, unless the block has been involved

in WL in the recent PT erases. DP (TH) swaps the content of the oldest block in the

hot pool and the youngest block in the cold pool if the erase count different exceeds TH.

PWL(TH) performs wear leveling on blocks that exceed a certain erase count thresh-



42Table 2: SSD configuration and policies. Only the parameters relevant to understanding
the wear leveling behavior are shown.

Parameter Value Parameter Value

Page size 4 KiB Physical capacity 284 GiB
Pages per block 256 Logical capacity 256 GiB
Block size 1 MiB Over-provisioning 11%
Block allocation FIFO Garbage collection Greedy

old that scales proportionally with the average erase count, offset by the TH% of the en-

durance limit. We first describe our experimental setup, present the evaluation results, and

summarize our findings.

4.3.1. Experimental Setup

We extend FTLSim [34]3 to include a WL model for our experiments. The original FTL-

Sim validates the analytical model for garbage collection, and thus focuses on accurately

modeling SSD-internal statistics such as write amplification rather than SSD-external per-

formance such as latency and throughput. This simplicity makes FTLSim fast, allowing us

to simulate the entire lifetime of an SSD (a few hundreds of TiB written). Table 2 summa-

rizes the SSD configuration and policies for our experiments.

To understand the behavior of WL techniques, we synthetically generate workload to con-

trol the I/O pattern better. All I/Os are small random writes, but the distribution is con-

trolled by two parameters r and h (0 < r < 1 and 0 < h < 1): r fraction of writes go

to the h fraction of the footprint (hot addresses) [140]. The r fraction of accesses are uni-

formly and randomly distributed within the hot addresses, and conversely, the 1 − r frac-

tion of accesses are uniformly and randomly distributed within the 1 − h cold addresses.

We use r/h to indicate that the r fraction of writes occurs on the h fraction of the logical

space. Unless otherwise noted, we generate the I/O workload for the entire logical address
3We plan to make our FTLSim extension publicly available.
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(a) The distribution of erase count after writing
25TiB.

(b) The interval between consecutive OBP WLs
for the oldest block.

Figure 17: The performance anomaly of wear leveling under r/h = 0.9/0.1 workload. In
Figure 17a, we observe that wear leveling makes the erase count more uneven, as evident
by the flat plateaus in the CDF curve. This is because a small set of blocks are heavily
involved in wear leveling, as shown in Figure 17b: most of the erases happen soon after
the protection period ends.

Figure 18: The write amplification caused by wear leveling under a r/h = 0.9/0.1 synthetic
workload. PWL(50) that aggressively performs wear leveling at the late stage causes its
write amplification to be as high as 5.4×.

space. Prior to each experiment, we pre-condition the SSD with one sequential full-drive

write, followed by three random full-drive writes (256 GiB sequential + 768 GiB random

write) to put drive into a steady state [151].

4.3.2. Evaluation of Wear Leveling under Synthetic Workloads

We investigate the performance of wear leveling in the following three aspects: (1) write

amplification, (2) effectiveness in equalizing the erase count, and (3) behavior under differ-
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(a) A skewed workload with r/h = 0.8/0.2. (b) The pool association histogram for DP (5).

Figure 19: The distribution of erase count under r/h = 0.8/0.2 (skewed). The red dot in-
dicates the average erase count for NoWL. For the skewed workload in Figure 19a, wear
leveling comes at a high cost of write amplification, as evident by the fact that the lines
are on the right side of the red dot. DP causes the erase count to diverge, and examin-
ing the pool association reveals that the blocks associated with cold data are much older
than the blocks associated with hot data, as shown in Figure 19b. This inversion occurs
because the algorithm assumes that blocks with hot data are old and those with cold data
are young, and swaps the oldest block in the hot pool with the youngest block in the cold
pool. If the youngest block in the cold pool becomes older than the oldest block in the hot
pool, an unnecessary WL takes place, moving the hot data into the older block.

Figure 20: The distribution of erase count under r/h = 0.5/0.5 (uniform). we observe that
the benefit from wear leveling is negligible compared to not running at all.

ent access footprint.
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We measure the WL-induced write amplification (WA) by using a synthetic workload of

r/h = 0.9/0.1 for up to 100 full-drive writes (25 TiB). We examine PWL and two different

configurations for OBP and DP wear leveling each. The WL parameter values we experi-

ment with are similar to those used in the prior work [20] [25].

Figure 18 shows the write amplification caused by wear leveling over time, and we make

the following four observations. First, the wear leveling-induced write amplification can be

as high as 5.4×. This means that for each 256 GiB user data written, wear leveling alone

will create an additional 1.35 TiB of data writes internally. Secondly, the WL threshold

parameter TH dictates the WA for both OBP and DP. Changing the TH from 8 to 4 for

the OBP algorithm will amplify the amount of data written by 1.2×, while changing from

10 to 5 for the DP, by 1.4×. Thirdly, as expected, PWL is inactive during the early stages.

However, beyond about 80 full-drive writes, it exhibits an aggressive behavior, causing sig-

nificant WA, as high as 5.4×. Lastly, WA steadily increases over time as the SSD ages,

indicating that SSD aging will accelerate as more data are written.

Wear Leveling Effectiveness

We measure the distribution of erase count of different configurations under a synthetic

workload as shown in Figure 17. We exercise a workload with r/h = 0.9/0.1 for 100 full-

drive writes (25 TiB).

Figure 17a shows that under r/h = 0.9/0.1, all three WL show uneven distribution of erase

counts, in fact, worse than not running WL (NoWL). For OBP (4, 8) and OBP (8, 64),

we observe that the CDF plateaus before reaching 1.0, indicating that there are a small

group (of 7% for OBP (4, 8) and 3% for OBP (8, 64)) blocks that exceed the 1200 erase

count. Similarly, DP and PWL also show a concave dip in the CDF curve, indicating a
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line, meaning that the erase counts are more tightly distributed. We consider this to be a

performance anomaly of wear leveling because it behaves the opposite of what is expected.

Through analysis, we find that the block with the highest erase count in the OBP algo-

rithm is overly involved in wear leveling, despite the fact that the PT parameter is de-

signed to protect the block from being erased again. We run another experiment using the

same r/h = 0.9/0.1 workload, but for OBP (5, 1000). Figure 17b shows the interval be-

tween two consecutive WL for the most worn-out block. Even with a long PT = 1000, the

block is involved in WL again soon after its protection period expires.

We also evaluate OBP, DP and PWL with r/h = 0.8/0.2 and r/h = 0.5/0.5, as shown

in Figure 19 and Figure 20. Even though OBP (4, 8) and OBP (8, 64) show nearly verti-

cal CDF curves, the average erase count is much higher, indicating that it amplifies the

amount of written data significantly. PWL(25), PWL(50), and PWL(75), however, show

a similar result with NoWL. On the other hand, both DP (5) and DP (10) show perfor-

mance anomaly with a skewed workload (Figure 19a), as shown in the wider CDF curves

compared to NoWL. We examine the bimodal distribution of DP (5) and find that the

erase count distribution is bimodal with blocks associated with the cold pool older than

those in the hot pool. The DP algorithm’s underlying assumption is that blocks contain-

ing hot data are older than blocks with cold data, and it compares the erase count of the

oldest block in the hot pool and the youngest block in the cold pool. If the youngest block

in the cold pool happens to be older than the oldest block in the hot pool, however, it will

still trigger the swap between the two blocks, causing this inversion.

On the other hand, with a uniformly random workload (Figure 20), there is a negligible

difference between running WL and not running WL at all. This is because with a uni-

form workload, all blocks are used equally, and there is little room for wear leveling. We



47

(a) A skewed distributed workload with r/h =
0.9/0.1.

(b) A uniformly random workload with r/h =
0.5/0.5.

Figure 21: The distribution of erase count when only 5% of the logical address space is
used. The red dot indicates the average erase count for NoWL. With a small footprint,
wear leveling achieves good evenness in erase count while not running it causes a bimodal
distribution. However, with a skewed workload in Figure 21a, we observe that the erase
counts for WL are further to the right of the red dot compared to those in Figure 21b, in-
dicating that WL amplified the amount of data writes.

do observe, however, that DP (5) still exhibits a performance anomaly though at a smaller

degree than under r/h = 0.9/0.1 (cf. Figure 17a).

These experiments show that WL algorithms are a double-edged sword. As shown in Fig-

ure 17a, it can make the distribution of wear worse than not running WL at all. On the

other hand, it can achieve good wear leveling but at a high cost of accelerated overall wear

state.

Small Access Footprint

Previously in § 4.3.2 and § 4.3.2, the experiments were conducted by writing to the entire

logical address space. Here we explore the performance of wear leveling when the accesses

are restricted to a small address space using two synthetic workloads, r/h = 0.9/0.1 and

r/h = 0.5/0.5, as shown in Figure 21.

Overall, we observe that most WL techniques are effective in equalizing the erase count,

as shown by the near-vertical CDF curve in both Figure 21a and Figure 21b. NoWL, on
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both workloads. We also observe that when the workload is skewed (Figure 21a), the WL

techniques achieve this evenness by amplifying the amount of data writes, as shown by

the rightward shift in the CDF curves. For a uniform workload, on the other hand (Fig-

ure 21b), the overall write amplification from wear leveling is much lower as data in used

blocks are equally likely to be invalidated.

Unlike the results from Figure 17 and Figure 19 where the entire logical address space is

written, WL is effective only when a small fraction of the address space is used, restricting

its overall usefulness.

4.3.3. Summary of Findings

Based on the experimental results using synthetic workloads, we qualitatively summarize

the effectiveness of wear leveling in Table 3.

• Uniform access with a small access footprint: Overall, WL evens out the erase

count with low write amplification. (Figure 21b)

• Skewed access with a small access footprint: WL achieves good performance

but at the cost of high write amplification. (Figure 21a)

• Uniform access with a large access footprint: The performance of wear level-

ing has a negligible difference with not running it at all. There may be cases where

performance anomaly occurs. (Figure 20)

• Skewed access with a large access footprint: Wear leveling not only amplifies

writes, but also exhibits an anomaly by significantly accelerating the erase count for

a group of blocks. (Figure 17a)

Instead of proposing a new wear leveling algorithm that solves both the write amplifica-
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Uniform access Skewed access

Small footprint Effective Write amplified
Large footprint Negligible Anomaly

tion overhead and performance anomaly, we question the circumstances that require wear

leveling and examine its necessity in the next section.

4.4. A Capacity-Variant SSD

Our experiments on the effectiveness of wear leveling show that it is difficult to achieve a

good WL performance. There is only a limited number of scenarios where WL achieves its

intended goal; in other cases, it either results in high write amplification or further uneven-

ness.

We argue that WL is an artifact only designed to maintain an illusion of a fixed capac-

ity device wherein its underlying storage components (i.e., flash memory blocks) either all

work or fail. This, however, is far from the truth where blocks wear out individually (often

at different rates) and are mapped out by the SSD once they become unusable. In other

words, it is natural for the SSD’s physical capacity to reduce over time, and it is only the

fixed capacity abstraction that mandates the SSD’s lifetime to be defined as when the

physical capacity becomes less than the logical capacity.

Instead, a capacity-variant SSD [80] would gracefully reduce its exported capacity. This

has three benefits over the traditional fixed capacity interface. First, wear leveling becomes

unnecessary as it does not need to ensure that all blocks wear out evenly. This would free

the SSD from needing the computational resources for the WL algorithm and incur no

write amplification overhead. Secondly, the lifetime of an SSD would extend significantly,

and it would be defined by the amount of data stored in the SSD, not by the initial logical
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a virtual desktop infrastructure [91], and the remaining 9 (from WBS to RAD-BE) are from
Microsoft production servers [78]. Footprint is the size of the logical address space that
has write accesses, and Hotness is the skewness where r% of data are written to the top
h% of the frequently accessed address. Sequentiality is the fraction of write I/Os that
are sequential.

Workload Description Footprint (GiB) Avg. write size (KiB) Hotness (r/h) Sequentiality

YCSB-A User session recording 89.99 50.48 64.69/35.31 0.49
VDI Virtual desktop infrastructure 255.99 17.99 64.45/35.55 0.14
WBS Windows build server 56.05 27.82 60.34/39.66 0.02
DTRS Developer tools release 150.63 31.85 54.20/45.80 0.12

DAP-DS Advertisement caching tier 0.17 7.21 78.62/21.38 0.03
DAP-PS Advertisement payload 36.06 97.20 55.02/44.98 0.16
LM-TBE Map service backend 239.49 61.90 60.29/39.71 0.94
MSN-CFS Storage metadata 5.58 12.92 69.28/30.72 0.25

MSN-BEFS Storage backend file 31.42 11.62 70.18/29.82 0.03
RAD-AS Remote access authentication 4.53 9.87 70.90/29.10 0.45
RAD-BE Remote access backend 14.73 13.02 65.51/34.49 0.33

capacity. Lastly, it would be easier to determine when to replace an SSD. An SSD whose

capacity is reduced, close to the amount of data stored and in use, would be a clear indica-

tion of an ailing SSD.

4.5. Evaluation

We evaluate both the presence and absence of wear leveling (OBP [42], DP [20], and PWL [25])

on both a fixed capacity SSD and a capacity-variant SSD using real-world I/O traces. We

design the experiments with the following questions in mind:

• Does capacity variance extend the lifetime of the SSD? How does wear leveling (WL)

interact with capacity variance? (§ 4.5.1)

• How sensitive is the effectiveness of capacity variance to different garbage collection

(GC) policies? Do GC policies alter WL results? (§ 4.5.2)

• What is the file system-level overhead with capacity-variant SSDs? Is there a tunable
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We use the same extended FTLSim [34] from § 4.3 and the SSD configuration in Table 2

for our evaluation. However, we set the endurance limit to 500 erases, a typical level for

QLC [97, 102], and once a block reaches this, it will be mapped out and no longer used in

the SSD. This mapping out will effectively reduce the SSD’s internal physical capacity. For

the fixed capacity SSD, the SSD is considered to reach its end of life once the physical ca-

pacity becomes smaller than its logical capacity. On the other hand, the capacity-variant

SSD can reduce its capacity below the initial logical space, to as low as the access foot-

print for the workload. We assume that the file system will TRIM unnecessary data as the

exported capacity shrinks, and that the overhead for maintaining a contiguous block ad-

dress space is negligible.

For the workload, we use eleven real-world I/O traces that were collected from running

YCSB [172], a virtual desktop infrastructure (VDI) [91], and Microsoft production servers [78].

The traces are modified into a 256GiB range (the logical capacity of the SSD), and all the

requests are aligned to 4KiB boundaries. Similar to the synthetic workload evaluation, the

SSD is pre-conditioned with one sequential full-drive write and three random full-drive

writes on the entire logical space. The traces run in a loop indefinitely, continuously gener-

ating I/O until the SSD becomes unusable at its end of life. Table 4 summarizes the trace

workload characteristics, only showing the information relevant to understanding the be-

havior of wear leveling (WL).

We evaluate the following eight designs:

• Fix_NoWL does not run any WL on a fixed capacity SSD.

• Fix_OBP runs OBP (4, 8) on a fixed capacity SSD.
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• Fix_PWL runs PWL(50) on a fixed capacity SSD.

• Var_NoWL does not run any WL on a capacity-variant SSD.

• Var_DP runs DP (5) on a capacity-variant SSD.

• Var_PWL runs PWL(50) on a capacity-variant SSD.

4.5.1. Effectiveness of Capacity Variance

Figure 22 shows the amount of data written to the SSD before failure for the 11 I/O traces.

The y-axis is in terms of the number of drive writes. For example, for 100 drive writes,

25TiB of data have been written. Overall, we observe that with fixed capacity SSDs, run-

ning WL is better than not running WL, but only by a small margin: Fix_DP extends

the lifetime by only 18% on average compared to Fix_NoWL, and with workloads such

as VDI and DTRS, Fix_OBP and Fix_DP perform worse than Fix_NoWL. However,

with capacity variance, not running WL is better than running WL by a large margin:

V ar_NoWL extends the lifetime by 1.33× on average, and as much as 2.94× for RAD-BE

compared to Fix_PWL. We explain this result by the measurement of write amplifica-

tion caused by wear leveling, shown in Figure 23.

Workloads with a Relatively Small Footprint

We observe that capacity variance is most effective on workloads such as DAP-DS, DAP-PS,

MSN-CFS, RAD-AS, and RAD-BE. These workloads are characterized by a small access foot-

print where gracefully reducing the capacity allows for the SSD to be continuously used.

The lifetime extension gained by capacity variance with wear leveling is minimal. At most,

9.2% is gained from Fix_PWL to V ar_PWL, and only 7.7% from Fix_DP to V ar_DP ,

4.9% from Fix_OBP to V ar_OBP . The underlying reason for this is WL causes write
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Figure 22: Evaluation of the presence and absence of wear leveling in both a fixed capacity
and a capacity-variant SSD. Capacity variance extends the lifetime by 1.33× on average,
and as high as 2.94× in the case of RAD-BE.

Figure 23: Write amplification caused by WL. While a large sequential workload such as
LM-TBE only has a low write amplification overhead of 0.18, most other workloads exhibit
high wear leveling overhead for OBP an DP, reaching as high as 1.8. PWL is aggressive at
the late stage but dormant initially, causing the overall overhead is relatively low.

amplification (especially on skewed workload), aging all blocks in the SSD. In particular,

under workload such as DAP-DS, the write amplification for Fix_DP is as high as 1.80. A

capacity-variant SSD running WL thus has to reduce its capacity abruptly as all blocks

are similarly worn out. On the other hand, a capacity variance without wear leveling al-

lows 2.94× more data to be written to the SSD for RAD-BE, and 13.9× for DAP-DS with

most gain compared to Fix_NoWL.

MSN-BEFS also has a small footprint, but we observe a comparatively lower lifetime exten-

sion of 0.91×. In fact, the lifetime of Fix_NoWL isn’t too far off from that of Fix_DP ,

only 5% less. The reason for this is due to garbage collection: This workload contains a lot
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fication from WL. Because of this, MSN-BEFS only allows 145 full-drive writes (36.27 TiB)

even for the capacity-variant SSD.

Workloads with a Relatively Large Footprint

LM-TBE and VDI are two workloads with the largest footprint, and the benefit of capac-

ity variance is diminished in such workloads. For VDI, V ar_NoWL reduces the lifetime

by 3.1% compared to Fix_PWL, and for LM-TBE, V ar_NoWL reduces it by 3.6% com-

pared to Fix_DP . A large footprint means that there is little to gain from reducing the

capacity as data are still in use. For LM-TBE, the large sequential write with relatively high

uniformity causes the write amplification for WL to be small, as low as 0.18. This allows

wear leveling to squeeze more lifetime out of the SSD. This is the only workload where

V ar_DP has the longest lifetime.

DTRS is one of the rare occasions where not running WL is better in a fixed capacity SSD.

Fix_NoWL allows 117% more writes compared to Fix_OBP , and 18% more compared

to Fix_DP . This is due to the high write amplification of wear leveling. Although the

write access pattern of DTRS is fairly uniform, we suspect that a wear leveling anomaly

occurred, causing a subset of blocks to age rapidly. Introducing capacity variance extends

the lifetime for all three cases, however, with V ar_NoWL extending the lifetime by 24%

compared to Fix_DP . V ar_PWL outperforms V ar_NoWL, but the difference is only

3%.

4.5.2. Sensitivity to Garbage Collection

In this experiment, we investigate the effect that garbage collection (GC) policies have on

the lifetime of the SSD. GC has a profound impact not only on the overall performance of

the drive, but also on the lifetime because of its write amplification [32, 54, 77, 81, 173].

We compare two GC policies: greedy [176] and cost-benefit [140]. Greedy policy selects
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(a) Greedy vs. cost-benefit with V ar_OBP . (b) Greedy vs. cost-benefit with V ar_DP .

(c) Greedy vs. cost-benefit with V ar_PWL.
(d) Greedy vs. cost-benefit with
V ar_NoWL.

Figure 24: The sensitivity testing of capacity variance to garbage collection (GC) poli-
cies. GC has negligible effect on the overall lifetime of the capacity-variant SSD, with at
most 6.6% difference between greedy and cost-benefit in the case of YCSB-A without
wear leveling. The average difference between the two GC policies across all workload are
2.03%, 0.43%, 0.6%, and 0.67% for V ar_OBP , V ar_DP , V ar_PWL, and V ar_NoWL,
respectively.

the block with the least number of valid pages as the victim to clean with the rationale

that it would incur the least overhead. However, LFS [140] shows that greedy can lead to

a suboptimal performance especially on skewed workloads because hot, soon-to-be-updated

data gets cleaned when it would have been invalidated on its own.

Figure 24 shows the lifetime of a capacity-variant SSD when changing the GC policy with

each subfigure representing a different WL policy. Overall, we observe a negligible differ-

ence in the SSD’s lifetime when changing GC: on average, the difference is 2.03% for OBP
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Figure 25: Lifetime of a capacity-variant SSD as a function of maximum allowed file
system-level data relocation when no wear leveling is active. With the overhead of relo-
cation set to zero, the capacity-variant SSD behaves identical to that of a fixed capacity
SSD. We observe that with most workloads gain significant lifetime even with a small al-
lowance of data relocation.

in Figure 24a, 0.43% for DP in Figure 24b, 0.6% for PWL (Figure 24c), and 0.67% with-

out wear leveling (Figure 24d). In fact, the largest difference is for YCSB-A under V ar_NoWL,

and this is only a 6.6% difference. The experiment results here are also consistent with the

data presented in Figure 22, where V ar_NoWL extends the lifetime more than other de-

signs.

We attribute the lack of sensitivity to GC to the following two reasons. First, we exper-

iment on the entire lifetime of the SSD and the WA of WL steadily increases with age.

This reduces the overall effect of the GC’s WA on the lifetime. Secondly, capacity variance

mitigates the WA from GC. In a fixed capacity SSD, the overhead of GC increases as the

effective over-provisioning decreases when physical blocks map out. However, a capacity-

variant SSD also reduces the logical space, and thereby does not exacerbate the WA from

GC.
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Figure 25 shows the relationship between different file system (FS)-overhead bounds and

the maximum amount of data that can be written to the system. The x-axis is the FS-

level overhead bound we set for the capacity variance and the y-axis is the amount of ex-

ternal data written to the SSD under that bound in terms of the number of drive writes.

For example, the bound equal to 0 means that the system doesn’t allow any FS-level over-

head caused by capacity variance. On the other hand, setting the bounds to be unlimited

means the exported logical space will be reduced as the number of bad blocks increase un-

til the logical space is the same as the workload footprint, meaning that the file system

partition is full. No wear leveling is active in this experiment.

We observe that for the workload with a small footprint (DAP-DS, DAP-PS, MSN-CFS, RAD-AS,

and RAD-BE), a small amount of capacity reduction allows a significant gain for the SSD

lifetime. For example, with a 1GiB allowed overhead for data relocation at the file system,

V ar_NoWL under RAD-AS gains 11.64× lifetime compared to Fix_NoWL. On the other

hand, for workloads with a large footprint (VDI, DTRS, LM-TBE) we do not see a noticeable

increase in the lifetime as we increase the amount of allowed data relocation. However,

these workloads typically achieve a long lifetime even without capacity variance. Interest-

ingly, DAP-PS shows a sudden increase in its lifetime when allowing the 18th GiB to re-

locate. This is due to the large capacity of allocated space in the high address range for

DAP-PS.

Overall, Figure 25 demonstrates that capacity variance can be effective even when limiting

the file system-level overhead. V ar_NoWL with only a 1GiB allowance achieves a 3.21×

increase in lifetime across all workloads compared to Fix_NoWL, 4.07× at 5GiB, and

4.10× at 10GiB.
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4.6. Discussion and Related Works

Wear leveling is a mature and well-studied topic in both academia and industry [39]. How-

ever, to the best of our knowledge, our work is the first that presents a comprehensive

evaluation of existing wear leveling algorithms in the context of today’s low endurance

limit, and quantitatively examines the benefits of capacity variance. This work builds

upon a number of prior works, and we discuss how it relates to them below.

Wear leveling and write amplification. There exists a large body of work on garbage

collection and its associated write amplification (WA) for SSDs, from analytical approaches [34,

57, 133, 176] to designs supported by experimental results [21, 77, 181]. However, there

is surprisingly limited work that measures the WA caused by wear leveling (WL), and

they often rely on a back-of-the-envelope calculation for estimating the overhead and life-

time [182]. Even those that perform a more rigorous study evaluate the efficacy of WL by

measuring the amount of writes the SSD can endure [25, 69, 93, 166] or the distribution of

erase count [2, 20, 58]; only the Dual-Pool algorithm [20] present the overhead of WL. Our

faithful implementation of the Dual-Pool algorithm yields different WA from the original

work, however, due to the differences in system configuration and workload.

Lifetime extension without wear leveling. Similar to our approach, there are a num-

ber of prior works that extend the lifetime of an SSD without wear leveling [69, 93, 166].

READY [93] dynamically throttles writes to exploit the self-recovery effect of flash mem-

ory, and ZombieNAND [166] re-uses expired flash memory blocks after switching them into

SLC mode. Wear unleveling [69] identifies strong and weak pages, and skips writing to

weaker ones to prolong the lifetime of the block. We believe that capacity variance is com-

patible with these approaches as we focus on the interface exported by the SSD.

Zoned namespace. Zoned namespace (ZNS) [165] is a new abstraction for storage de-
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SSDs export large fixed-sized zones (typically in the GiB range) that can be written se-

quentially or reset (deleted) entirely. The approach shifts the responsibility of managing

space via garbage collection from the SSD to the host-side file system. Unlike its prede-

cessor (Open Channel SSD [11]), ZNS does not manage the physical flash memory block

and leaves the lifetime management to the underlying SSD, allowing for the integration of

capacity variance with ZNS.

File systems and workload shaping. It is widely understood that SSDs perform poorly

under random writes [24, 56], and file systems optimized for SSDs take a log-structured

approach so that writes would be sequential [42, 90, 116, 129, 180]. Because of the log-

structured nature, these file systems create data of similar lifetime, leading to a reduction

in wear leveling overhead [56]. Similarly, aligning data writes to flash memory’s page size

reduces the wear on the device [75].

Flash arrays and clusters. Most existing works at the intersection of RAID and SSDs

address its poor performance due to the compounded susceptibility to small random writes [28,

62, 83, 87, 119]. Of these, log-structured RAID [28, 83] naturally achieves good inter- and

intra-SSD wear leveling, but at the cost of another level of indirection. On the other hand,

Diff-RAID [9] takes a counter-intuitive approach and intentionally skews the wear across

the SSDs by distributing the parity blocks unevenly to avoid correlated failures in the SSD

array. While we do not advocate the intentional wear out of flash memory blocks, willful

neglect of wear leveling can be beneficial in the context of capacity variance.
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(a) Capacity reduction without relocation overhead.

(b) Capacity reduction with relocation overhead.

Figure 26: Illustration of the data relocation overhead for reducing capacity. In Fig-
ure 26a, the capacity can be reduced without the file system relocating data at the high
address. In Figure 26b, however, data in the allocated space at the high address must be
moved before reducing capacity.

4.7. Limitations

4.7.1. File System Overhead

A capacity-variant interface would need support from both the file system and device driver.

Thankfully, the current system design can make this transition seamless for the following

three reasons. First, the TRIM command, widely supported by interface standards such as

NVMe4 [124] allows the file system to explicitly declare that the data (at the specified ad-

dresses) are no longer in use. This allows the SSD to discard the data safely and would

help determine if the exported capacity can be gracefully reduced. Second, modern file

systems can safely compact their content so that the data in use are contiguous in the log-

ical address space. Log-structure file systems such as F2FS [90] support this more readily,

but file system defragmentation can also achieve the same effect in in-place update file sys-

tems such as ext4 [110]. Lastly, the file abstraction to the applications thankfully hides
4TRIM is called Deallocate in NVMe.
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storage capacity is the responsibility of the system administrator. We expected the system

support for a capacity-variant SSD to be no more complex than the zoned namespace [165]

command set that shifts the responsibility of garbage collection to the host side.

This file system support potentially incurs overhead for the file system to relocate data

from one logical space to another, as illustrated in Figure 26. In the case for Figure 26a,

the high logical address space is unused by the file system, and the capacity-variant SSD

gracefully reduce this space with no data relocation overhead for the file system. However,

in the case of Figure for Figure 26b, the SSD and the file system must handshake prior

to reducing the capacity. Naïvely, the file system would relocate not only the data at the

high address space, but also update any metadata for the block allocation and inode. A

more advanced commands such as SHARE [127] can be used to reduce the relocation over-

head.

4.8. Conclusion

In this work, we examine the performance of wear leveling (WL) in the context of modern

flash memory with reduced endurance. Unfortunately, our findings show that existing WL

exhibits limited effectiveness and may generate counter-productive results. To explore an

alternative strategy, we quantify the benefits of capacity variance in SSDs and find that

the lifetime can be extended significantly. We believe our findings confirm the potential for

the capacity-variant interface, and that WL may become an artifact of the past.
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The Design and Implementation of a Capacity-Variant

Storage System

5.1. Introduction

Fail-slow symptoms where components continue to function but experience degraded per-

formance [46, 132] have recently gained significant attention for flash memory-based solid-

state drives (SSDs) [103, 104, 183]. In SSDs, such degradation is often caused by the SSD-

internal logic’s attempts to correct errors [14, 46, 115, 130]. Recent studies have demon-

strated that fail-slow drives can cause latency spikes of up to 3.65× [103], and since flash

memory’s reliability continues to deteriorate over time [65, 103, 183], we expect the impact

of fail-slow symptoms on overall system performance to increase.

Figure 27 demonstrates a steady performance degradation for a real enterprise-grade SSD.

We age the SSD through random writes by writing about 100 terabytes of data each day,

and during morning hours when no other jobs are running, we measure the throughput

of the read-only I/O, both sequential and random reads. As shown in Figure 27, the per-

formance of the SSD degrades as the SSD wears out, at a rate of 4.2% and 4.3% of the

initial performance for each petabyte written, for random reads and sequential reads, re-

spectively. It is unlikely that the throughput drop is due to garbage collection as (1) this

was measured daily over months, and (2) only reads are issued during measurement. By

the end, writing a total of 9 petabytes of data to the SSD decreased the throughput by

37% for random reads and 38% for sequential reads.

To address this problem, we start with two key observations. First, flash memory, when it

eventually fails, does so in a fail-partial manner. More specifically, an SSD’s failure unit
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Figure 27: SSD performance degradation due to wear-out. The dashed line represents the
linear regression of the daily data points. The throughput decreases by 37% for random
reads and 38% for sequential reads after 9 petabytes of data writes.

is an individual flash memory block [14, 115, 130], and the SSD-internal wear leveling al-

gorithms are artifacts to emulate a hard disk drive-like fail-stop behavior [65, 80]. Second,

an SSD has no other choice but to trade performance as flash memory’s reliability dete-

riorates, because a storage device’s capacity remains fixed and unchanged from its newly

installed state until its retirement. SSD’s internal data re-reads [15, 16, 106, 134] or pre-

ventive re-writes [17, 50] are such choices that lead to fail-slow symptoms [79, 80].

Based on the two key observations, we propose a capacity-variant storage system (CVSS)

that maintains high performance even as SSD reliability deteriorates. In CVSS, the logi-

cal capacity of an SSD is not fixed; instead, it gracefully reduces the number of exported

blocks below the original capacity by mapping out error-prone blocks that would exhibit

fail-slow behavior and hiding them from the host. This approach is enabled by the SSD’s

ability to update data out-of-place. Surprisingly, we find that maintaining a fixed-capacity

interface comes at a heavy cost, and reducing capacity counterintuitively extends the life-

time of the device. Our experiments show that, compared to traditional storage systems,
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under real-world workloads.

We enable capacity variance by designing kernel-level, device-level, and user-level compo-

nents. The first component is a file system (CV-FS) that dynamically tunes the logical

partition size based on the aged state of the storage device. CV-FS is designed to reduce

capacity in an online, fine-grained manner and carefully manage user data to avoid data

loss. The device-level component, CV-SSD, maintains its performance and reliability by

mapping out aged and poor-performing blocks. Without needing to maintain fixed capac-

ity, CV-SSD simplifies flash management firmware, avoids fail-slow symptoms, and extends

its lifetime. Lastly, the user-level component, CV-manager, provides necessary interfaces to

the host for capacity variance. Users can set performance and reliability requirements for

the device through commands, and the CV-manager then adaptively orchestrates CV-FS

and the underlying CV-SSD.

The contributions of this paper are as follows.

• We present the design of a capacity-variant storage system that relaxes the fixed-

capacity abstraction of the storage device. Our design consists of user-level, kernel-

level, and device-level components that collectively allow the system to maintain per-

formance and extend its lifetime. (§ 5.3)

• We develop a framework that allows for a full-stack study on fail-slow symptoms

in SSDs over a long time, from start to failure. This framework provides a compre-

hensive model of SSD internals and aging behavior over the entire lifetime of SSDs5.

(§ 5.4)
5Our framework and extensions are available at https://github.com/ZiyangJiao/FAST24_CVSS_

FEMU

https://github.com/ZiyangJiao/FAST24_CVSS_FEMU
https://github.com/ZiyangJiao/FAST24_CVSS_FEMU
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Figure 28: Flash memory error rates have increased significantly over the past years.

• We evaluate and quantitatively demonstrate the benefits of capacity variance using

a set of synthetic and real-world I/O workloads throughout the SSD’s entire lifetime.

Capacity variance avoids the fail-slow symptoms and can significantly extend the

SSD’s lifetime. (§ 5.5)

5.2. Background and Motivation

We first show the increasing trend of flash memory errors in SSDs and describe how flash

cells wear out. We then explain how the current storage system abstraction exacerbates

reliability-related performance degradation, and summarize prior work for addressing these

fail-slow symptoms.

Flash memory errors and wear-out. The rapid increase in NAND flash memory den-

sity has come at the cost of reduced reliability and exacerbated fail-slow symptoms. Fig-

ure 28 shows the reported flash raw bit error rates (RBERs) in recent publications [14, 15,

36, 79, 106, 145, 150, 178], and this trend indicates that flash memory errors are already a

common case.

One of the significant flash memory error mechanisms is wear-out, where flash cells are

gradually damaged with repeated programs and erases [115, 130]. Because wear-outs are
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it is marked as bad by the SSD-internal flash translation layer (FTL) and taken out of

circulation. To replace these unusable blocks, SSDs are often over-provisioned with more

physical capacity than the logically exported capacity.

SSD’s wear-outs are caused not only by write I/Os, but also by SSD-internal management

such as garbage collection, reliability management, and wear leveling (WL). Although

much of the literature has emphasized the role of garbage collection in the SSD’s internal

writes, studies have revealed that SSD’s reliability management and WL also significantly

impact the lifetime [65, 70, 79, 108]. WL, in particular, is revealed to be far from perfect,

wearing out some of the blocks 6× faster [108] and often leads to counterintuitive accelera-

tion of wear-outs, increasing the write amplification factor as high as 11.49 [65].

Fixed capacity abstraction. Unfortunately, the current storage system abstraction

of fixed capacity requires SSDs to implement wear leveling (WL), even if it is imperfect

and harmful [65, 108]. Specifically, with the fixed capacity abstraction, the device is not

allowed to have part of its capacity fail (i.e., wear out) prematurely, and therefore the

SSD has to perform wear leveling to ensure that most, if not all, of its capacity is wearing

out at roughly the same rate. If the SSD cannot maintain its original exported capacity

when too many blocks become bad, then the entire storage device becomes unusable [130].

This is despite the fact that the SSD internally has a level of indirection and abstracts the

physical capacity.

However, the file system provides a file abstraction to the user-level applications, and this

abstraction hides the notion of capacity. While utility programs such as df and du re-

port the storage capacity utilization, file operations such as open(), close(), read(), and

write() do not expose capacity directly. Instead, the file system manages the storage ca-
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utilization of the SSD.

The fixed capacity abstraction used between the file system and storage devices necessi-

tates the implementation of WL on physical flash memory blocks. However, WL leads to

an overall increase in wear on the SSD, resulting in a significantly higher error rate as all

the blocks age. This, in turn, manifests into fail-slow symptoms in SSDs.

Fail-slow symptoms. Fail-slow symptoms are caused by the SSD’s effort to correct er-

rors [15, 16, 106, 134] and prevent the accumulation of errors [17, 50]. Because SSDs are

commonly used as the performance tier in storage systems where the identification and

removal of ill-performing drives are critical, fail-slow symptoms in SSDs have gained sig-

nificant attention recently. Prior research in this area can be categorized into three types.

The first group focuses on developing machine learning (ML) models to quickly identify

SSDs experiencing fail-slow symptoms [19, 55, 171, 183, 184]. Various models, including

neural networks [55], autoencoders[19], LSTM [184], feature ranking [171], and random

forest [183], have been explored with varying accuracy and efficacy. The second group

aims to isolate and remove ailing drives using mechanisms deployed in large-scale systems,

identified through ML [103] or system monitoring [54, 132]. The third group proposes

modifications to the interface to reject slow I/O and send hedging requests to a different

node [53] or drive [96].

Unfortunately, ML-based learning of SSD failures requires an immense number of data

points, is often expensive to train, and is only available in large-scale systems [103, 183].

Furthermore, as SSDs evolve and new error mechanisms emerge (e.g., lateral charge spread-

ing [92] and vertical and horizontal variability [146]), older ML models become obsolete,

making it difficult to reap the benefits of fail-slow prediction. Most critically, these prior
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(a) TrSS (b) CVSS

Figure 29: Comparison between the traditional fixed-capacity storage system (TrSS) and
capacity-variant storage system (CVSS). For TrSS (Figure 29a), the performance and reli-
ability degrade as the device ages to maintain a fixed capacity; for CVSS (Figure 29b), the
performance and reliability are maintained by trading capacity.

approaches only treat the symptoms and fail to consider the underlying cause: the flash

error mechanism.

5.3. Design for Capacity Variance

The high-level design principle behind the capacity-variant system is illustrated in Fig-

ure 29. This system relaxes the fixed-capacity abstraction of the storage device and en-

ables a better tradeoff between capacity, performance, and reliability. The traditional fixed-

capacity interface, which was designed for HDDs, assumes a fail-stop behavior where all

storage components either work or fail at the same time. However, this assumption is not

accurate for SSDs since flash memory blocks are the basic unit of failure, and it is the re-

sponsibility of the FTL to map out failed, bad, and aged blocks [80, 130].

By allowing a flexible capacity-variant interface, an SSD can gracefully reduce its exported

capacity, and the storage system as a whole would reap the following three benefits.

• Performant SSD even when aged. An SSD can avoid fail-slow symptoms by
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such as data re-reads [15, 16, 106, 134] and data re-writes [17, 50] would be per-

formed less frequently as blocks with high error rates can be mapped out earlier.

This, in turn, reduces the tail latency and lowers the write amplification, making it

easier to achieve consistent storage performance.

• Extended lifetime for SSD-based storage. An SSD’s lifetime is typically defined

with a conditional warranty restriction under DWPD (drive writes per day), TBW

(terabytes written), or GB/day (gigabytes written per day) [159]. With the fixed ca-

pacity abstraction, the SSD reaches the end of its lifetime when the physical capac-

ity becomes less than the original logical capacity. Instead, with capacity variance,

the lifetime of an SSD would be extended significantly, as it would be defined by the

amount of data stored in the SSD, not by the initial logical capacity.

• Streamlined SSD design. By adopting the approach of allowing the logical capac-

ity to drop below the initial value, SSD vendors can design smaller and more efficient

error correction hardware and their SSD-internal firmware: There is no need to over-

provision the SSD’s error handling logic or to ensure that all blocks wear out evenly.

Figure 30 illustrates the main components of a capacity-variant system. Enabling the ca-

pacity variance feature is achieved by designing the following three components: (1) CV-

FS, a log-structured file system for supporting elastic logical partition; (2) CV-SSD, a

capacity-variant SSD that maintains device performance and reliability by effectively map-

ping out aged blocks; and (3) CV-manager, a capacity management scheme that provides

the interface for adaptively managing the capacity-variant system.
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Figure 30: An overview of the capacity-variant system: (1) CV-FS exports an elastic log-
ical space based on CV-SSD’s aged state; (2) CV-SSD retires error-prone blocks to main-
tain device performance and reliability; and (3) CV-manager provides user-level interfaces
and orchestrates CV-SSD and CV-FS. The highlighted components are discussed in detail.

5.3.1. Capacity-Variant FS

The higher-level storage interfaces, such as the POSIX file system interface, allow multiple

applications to access storage using common file semantics. However, to support capacity

variance, the file system needs to be modified. In this section, we discuss the feasibility

of an elastic logical capacity based on existing storage abstractions and then investigate



71different approaches for supporting capacity variance, Lastly, we describe our new interface

for capacity-variant storage systems based on the selected approach.

Feasibility of Elastic Capacity

Current file systems assume that the capacity of the storage device does not change and

tightly couple the size of the logical partition to the size of the associated storage device.

To overcome this limitation, the CV-FS file system declares the entire address space for

use at first and then dynamically adjusts the declared space as the storage device ages in

an online manner. This is achieved by defining a variable logical partition that is indepen-

dent of the physical storage capacity.

Thankfully, this transition is feasible for three reasons. First, the TRIM [124] command,

which is widely supported by interface standards such as NVMe, enables the file system

to explicitly declare the data that is no longer in use. This allows the SSD to discard the

data safely, making it possible to reduce the exported capacity gracefully. Second, modern

file systems can safely compact their content so that the data in use are contiguous in the

logical address space. Log-structured file systems [140] support this more readily, but file

system defragmentation [160] techniques can be used to achieve the same effect in in-place

update file systems. Lastly, the file abstraction to the applications hides the remaining

space left on storage. A file is simply a sequence of bytes, and file system metadata such

as utilization and remaining space is readily available to the system administrator.

File System Designs for Capacity Variance

Shrinking the logical capacity of a file system can be a complex procedure that may re-

sult in data loss if not done carefully [80]. Most importantly, any valid data within the to-

be-shrunk space must be relocated and the process must be coordinated with underlying

storage accordingly. Moreover, to ensure users do not need to unmount and remount the

device, the logical capacity should be reduced in an online manner, and the time it takes
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(a) Non-contiguous address space (b) Data relocation

(c) Address remapping
Figure 31: High-level ideas of three different approaches to support capacity variance.

to reduce capacity should be minimal with low overhead.

Figure 31 illustrates three high-level ideas and Figure 32 depicts their implementation ap-

proaches to performing online address space reduction: (1) through a non-contiguous ad-

dress space; (2) through data relocation; and (3) through address remapping. We describe

each approach and our rationale for choosing the address remapping (Figure 32c).

• Non-contiguous address space (Figure 32a). The file system internally decouples

the space exported to users from the LBA. When logical capacity should be reduced,

the file system identifies an available range of free space from the end of the logical

partition and then restricts the user from using it, for example, by marking that as

allocated. With this approach, the adjustment of logical capacity can be efficiently

achieved with minimal upfront costs, as the primary task involved is allocating the

readily available free space. However, this approach increases the file system clean-

ing overhead and fragments the file system address space. Due to the negative effect

of address fragmentation [29, 30, 51, 63], we avoid this approach despite the lowest

upfront cost.
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(a) Non-contiguous address space (b) Data relocation

(c) Address remapping
Figure 32: Design options for capacity variance. In Figure 32a, the FS internally maps out
a range of free LBA from the user, causing address space fragmentation. In Figure 32b,
the data block is physically relocated to lower LBA. This approach maintains the contigu-
ity of the entire address space but exerts additional write pressure on the SSD. Lastly, in
Figure 32c, the data block can be logically remapped to lower LBA. This approach incurs
negligible system overhead by introducing a special SSD command to associate data with
a new LBA.

• Data relocation (Figure 32b). Similar to segment cleaning or defragmentation, the

file system relocates valid data within the to-be-shrunk space to a lower LBA region

before reducing the capacity from the higher end of the logical partition. This ap-

proach maintains the contiguity of the entire address space. Nevertheless, it is essen-

tial to note that data relocation exerts additional write pressure on the SSD and the

overhead is proportional to the amount of valid data copied. Moreover, user requests

are potentially stalled during the relocation process.
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(a) Time elapsed for shrinking 1 GiB logi-
cal capacity.

(b) Performance comparison before and
after shrinking 60 GiB logical capacity.

Figure 33: Performance results for three capacity variance approaches. The address
remapping approach introduces lower overhead (Figure 33a) and does not incur fragmenta-
tion after shrinking the address space (Figure 33b).

• Address remapping (Figure 32c). Data is relocated logically at the file system

level without data relocation at the SSD level by taking advantage of the already

existing SSD-internal mapping table [127, 185]. While this approach necessitates the

introduction of a new SSD command to associate data with a new LBA, it effectively

mitigates address space fragmentation and incurs negligible system overhead, as no

physical data is actually written.

We implement the three approaches above on F2FS and measure the elapsed time for re-

ducing capacity by 1 GiB. The reported results represent an average of 60 measurements.

On average, each measurement resulted in the relocation or remapping of 0.5 GiB of data

for the aged file system case and 0.05 GiB of data for the young case. We further compare

the performance under the sequential read workload with two I/O sizes (i.e., 16 KiB and

4096 KiB) before and after capacity is reduced. As depicted in Figure 33, the elapsed time

required to shrink 1 GiB of logical space on an aged file system is 0.317 seconds when em-

ploying the address remapping approach. In contrast, the data relocation approach takes

approximately 4.5 seconds. Notably, while the non-contiguous address space approach only
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Figure 34: The REMAP command workflow for capacity variance: data in the range be-
tween srcLPN and srcLPN + srcLength -1 are remapped to logical address starting from
dstLPN. The third argument, dstLength, is optionally used for the file system to ensure
I/O alignment.

takes 0.004 seconds, it exhibits significant performance degradation after the capacity re-

duction, for example, 13% for 16 KiB read and 50% for 4096 KiB read, due to increased

fragmentation. We next present the design details of the proposed remapping interface and

the capacity reduction process with that.

Interface Changes for Capacity Variance

To integrate the address remapping approach into CV-FS, we revise the interface proposed

by prior works [127, 185], REMAP(dstLPN, srcLPN, dstLength, srcLength), and tailor it

for capacity-variant storage systems. Our modified command enables file systems to safely

shrink the logical capacity with minimal overhead by remapping valid data from their old

LPNs to new LPNs without the need for actual data rewriting [127, 185]. We extend the

current NVMe interface to include remap as a vendor-unique command.

Figure 34 shows an example of the remap command used for shrinking capacity. Assuming

the file system address space ranges from LBA0 – LBA47 at the beginning (i.e., LPN0 –
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the device. At time t, CV-FS initiates the capacity reduction and identifies that LBA40 –

LBA47 (or LPN5) contains valid data. It then issues the remap command to move LPN5

data to LPN3 (i.e., remap(LPN3, LPN5, 1, 1). Upon receiving the remap command,

the FTL first finds the PPN associated with LPN5 (PPN6 in our case) and updates the

logical-to-physical (L2P) mapping of L3 to PPN6. Finally, the old L2P mapping of L5 is

invalidated, and the new physical-to-logical (P2L) mapping of PPN6 is recorded in the

NVRAM of the SSD. Once the to-be-shrunk space is free, the file system states are vali-

dated and a new logical capacity size is updated.

In particular, the required size for NVRAM is small (for example, 1 MiB for a 1 TiB drive

as suggested by the prior work [127]), as it is only used to maintain a log of the remap-

ping metadata. Assuming the SSD capacity and page size are 1TB and 4KB, respectively,

a single remapping entry requires no more than 8B space. The 1 MiB NVRAM would be

sufficient to hold entries for 512 MiB remapped data during a capacity reduction event.

Between capacity reduction events, the reclamation of a flash block/page will cause a pas-

sive recycle on the associated remapping entries. However, in cases where a larger buffer

is needed, the log can perform an active cleaning or write part of the mappings to flash

because the space allocated for internal metadata will be conserved with a smaller device

capacity [47]. Alternatively, the need for NVRAM can be eliminated by switching to the

data relocation method, but at the cost of a higher overhead for logical capacity adjust-

ment.

As a result, this new interface does not require taking the file system and device offline to

adjust address space since data are managed logically. Moreover, it does not complicate

the existing file system consistency management scheme. Similar to other events such as

discard, the file system periodically performs checkpoints to provide a consistent state.
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remapping command and CrashMonkey [118] with its pre-defined workloads [117].

5.3.2. Capacity-Variant SSD

In this section, we outline design decisions and their leading benefits for building a capacity-

variant SSD. We first discuss the necessity to forgo wear leveling in CV-SSD, and then de-

scribe its block management and life cycle management for extending lifetime and main-

taining performance. Lastly, we introduce a degraded mode to handle the case where the

remaining physical capacity becomes low.

Note that blocks in this subsection refer to physical flash memory blocks, different from

the logical blocks managed by the file system. Furthermore, the flash memory blocks are

grouped and managed as superblocks (again, different from the file system’s superblock) to

exploit the SSD’s parallelism.

Wear Focusing

The goal of a capacity-variant SSD is to keep as much flash as possible at peak perfor-

mance and mitigate the impact of underperforming and aged blocks. A capacity-variant

SSD would maintain both performance and reliability by gracefully reducing its exported

capacity so aged blocks can be mapped out earlier. Therefore, a capacity-variant SSD does

not perform wear leveling (WL), as it degrades all of the blocks over time. WL is an ar-

tifact designed to maintain an illusion of a fixed-capacity device wherein its underlying

storage components (i.e., flash memory blocks) either all work or fail, opposing our goal of

allowing partial failure.

Moreover, static WL [20, 25, 42] incurs additional write amplification due to data relo-

cation within an SSD. Dynamic WL [26, 27], on the other hand, typically combines with

SSD internal tasks such as garbage collection, reducing the overall cleaning efficiency as
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study on millions of SSDs reveals that the WL techniques in modern SSDs present limited

effectiveness [108] and an analysis study demonstrates that WL algorithms can even ex-

hibit unintended behaviors by misjudging the lifetime of data in a block [65]. Such counter-

productive results are avoided by forgoing WL and adopting capacity variance.

Block Management

A capacity-variant SSD exploits the characteristics of flash memory blocks to extend its

lifetime and meet different performance and reliability requirements. Flash memory blocks

in SSDs wear out at different rates and are marked as bad blocks by the bad block man-

ager when they are no longer usable [67, 130]. This means that the physical capacity of

the SSD naturally reduces over time, and for a fixed-capacity SSD, the entire storage de-

vice is considered to have reached the end of its life when the number of bad blocks ex-

ceeds its reserved space. On the other hand, the capacity-variant SSD’s lifetime is defined

by the amount of data stored in the SSD, rather than the initial logical capacity, making it

a more reliable and efficient option.

The fail-slow symptoms and performance degradation in SSDs are caused by aged blocks

with high error rates [15, 16, 106, 134]. Traditional SSDs consider blocks as either good

or bad and such coarse-grained management fails to meet different performance and reli-

ability requirements. On the other hand, the capacity-variant SSD defines three states of

blocks: young, middle-aged, and retired, based on their operational characteristics. Young

blocks have a relatively low erase count and a low RBER, while middle-aged blocks have

higher errors and require advanced techniques to recover data. Retired blocks that are

worn out or have a higher RBER than the configured threshold (5% by default) are ex-

cluded from storing data.

This block management scheme allows the capacity-variant SSD to map out underper-
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reliability. In general, blocks start from a young state and transition to middle-aged and

retired states. However, a block can also transition from a middle-aged state back to a

young state since transient errors (i.e., retention and disturbance) are reset once the block

is erased [79].

Life Cycle Management

A capacity-variant SSD requires wear focusing to mitigate the impact of aged flash mem-

ory blocks. However, simply avoiding wear leveling is insufficient as there are two processes

affecting the life cycle of a flash memory block: block allocation and garbage collec-

tion (GC). Traditional policies such as youngest-block-first for allocation and cost-benefit

for GC work well on a traditional SSD, but are not suitable for CV-SSDs, since they aim

to achieve a uniform wear state among blocks. Implementing these policies can cause a

large number of blocks with the same erase count to map out simultaneously, leading to

excessive capacity loss, and the device may suddenly fail. Figure 35 demonstrates this is-

sue, where over 60% of the blocks aggregate to a particular wear state. Excessive capacity

loss can increase the write amplification factor (WAF), particularly when the device uti-

lization rate is high.

Allocation policy. In order to make wear accumulate in a small subset of blocks and al-

low capacity to shrink gradually, CV-SSD will prioritize middle-aged blocks to accommo-

date host writes and young blocks for GC writes. Since retired blocks are not used, there

are four scenarios when considering data characteristics.

• Write-intensive data are written to a middle-aged block

• Write-intensive data are written to a young block

• Read-intensive data are written to a middle-aged block
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Figure 35: The wear distribution for a 256 GiB SSD under 100 iterations of MS-DTRS
workload [78]. Traditional GC and block allocation policies cause a sudden capacity loss as
too many blocks are equally aged.

• Read-intensive data are written to a young block

Type I and type IV are ideal cases as they help to converge the wear among blocks with-

out affecting the performance. Type II will also not affect the performance when data are

fetched by the host because of the low RBER of young blocks. Moreover, with CV-SSD’s

allocation policy, such write-intensive data are inevitably re-written by the file system to

the middle-aged blocks and the type II blocks will be GC-ed due to their low valid ra-

tio. This type of scenario also happens under the early stages of CV-SSD, in which most

blocks are young. Lastly, type III is the case where we need to pay more attention: read-

intensive data should be stored in young blocks; otherwise expensive error correction tech-

niques are triggered more often.

Garbage collection. We modify the garbage collection policy to consider (in)valid ratio,

aging status, and data characteristics to handle type III cases. The block with the highest
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V ictim score = Winvalidity · invalid ratio

+Waging · aging ratio

+Wread · read ratio

invalid ratio =
# of invalid pages

# of valid pages+# of invalid pages
,

aging ratio =
erase count

endurance
,

read ratio =
# of host read designated to the current block

maximum host read among unretired blocks
.

(5.1)

Winvalidity, Waging, and Wread are weights to balance WAF, the aggressiveness of wear fo-

cusing, and the sensitivity of preventing type III scenarios, respectively. With that, read-

intensive data stored in aged blocks are relocated by GC. Considering the read ratio could

potentially affect the garbage collection efficiency. To avoid low GC efficiency, we set Winvalidity =

0.4, Waging = 0.3, and Wread = 0.3, and their sensitivity analysis is shown in § 5.5.4.

Increasing Wread is unfavorable not only because of adverse effects on WAF but also due

to introducing unnecessary data movement. For example, a middle-aged block containing

many valid pages but experiencing only a minimal number of reads is selected as the vic-

tim.

Degraded Mode

During normal conditions, CV-SSD intentionally unevens the wear state among blocks.

As error-prone blocks retire, the physical capacity decreases gradually and performance is

maintained. However, the physical capacity could decrease to a level where it will be insuf-

ficient to maintain current user data. Moreover, it can also cause high garbage collection

overhead. In this case, CVdegraded mode will be triggered and CV-SSD will slow down the

further capacity loss. It is noteworthy that the triggering of degraded mode indicates a
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Figure 36: CV-manager design diagram. CV-manager monitors CV-SSD’s aged state
(Steps 1 and 2) and provides a recommended logical capacity to CV-FS (Step 3). After ca-
pacity reduction (Steps 4–6), CV-manager notifies CV-SSD (Step 7). The CVdegraded mode
will be triggered if the reduction fails (Step 8).

low remaining capacity to trade for performance, and storage administrators can gradually

upgrade storage systems.

In particular, the CVdegraded mode is triggered under two conditions: (1) when the effective

over-provisioning (EOP), calculated as EOP = (physical capacity−utilization)/utilization,

falls below the factory-set over-provisioning (OP), or (2) when the remaining physical ca-

pacity is less than a user-defined watermark.

Once CVdegraded mode is set, GC only considers WAF and aging to slow down further ca-

pacity loss. This mode allows young blocks to be cleaned with a relatively higher valid ra-

tio than aged blocks. Specifically, young blocks with a high invalid ratio are optimal can-

didates. Moreover, middle-aged blocks are used to accommodate GC-ed data, and young

blocks are allocated for host writes. As a result, blocks are used more evenly than in the

initial stage and a particular amount of physical capacity is maintained for the user. When

EOP becomes greater than OP if the host decides to move or delete some data, CVdegraded

will be reset by CV-manager.
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To improve usability, CV-manager is responsible for automatically managing the capacity

of the whole storage system. As illustrated in Figure 36, CV-manager monitors the aged

state of the underlying storage device and provides a recommended logical partition size to

the kernel.

Specifically, when CV-SSD maps out blocks and its physical capacity is reduced, CV-manager

will get notified (Steps 1 and 2). The CV-manager figures out a recommended logical ca-

pacity by checking the current bad capacity within the device and issues capacity reduc-

tion requests to CV-FS through a system call (Step 3). Upon request, CV-FS performs a

sanity test. If the file system checkpoint functionality is disabled or the file system is not

ready to shrink (i.e., frozen or read-only), the reduction will not continue (Step 4). Oth-

erwise, CV-FS starts shrinking capacity as described in § 5.3.1 and returns the execution

result (Steps 5 and 6). Lastly, CV-manager notifies CV-SSD whether logical capacity is

reduced properly or not. If the reduction fails, the CVdegraded is activated to slow down fur-

ther capacity loss (Steps 7 and 8).

For user-level capacity management, CV-manager provides necessary interfaces for users

to explicitly initiate capacity reduction and set performance and reliability requirements

for the device. The CV-SSD would retire blocks based on the host requirement. Similar

to the read recovery level (RRL) command [124] in the NVMe specification that limits the

number of read retry operations for a read request, this configurable attribute limits the

maximum amount of recovery applied to a request and thus balances the performance.

5.4. Implementation

The capacity-variant file system (CV-FS) is implemented upon the Linux kernel v5.15.

CV-FS uses F2FS [90] as the baseline file system due to its virtue of being a log-structure
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than the baseline F2FS (i.e., 50ms interval if candidates exist and 10s max interval if no

candidates) for better SSD garbage collection efficiency [84] (also shown in § 5.5.2).

To implement the remap command, we extend the block I/O layer. A new I/O request

operation REQ_OP_REMAP is added to expose the remap command to the CV-FS. New at-

tributes including bio->bi_iter.bi_source_sector and bio->bi_iter.bi_source_size

are introduced in bvec_iter, which corresponds to the second and last parameter of the

remap command. Functions related to bio splitting/merging procedure (e.g., __blk_queue_split)

are modified to maintain added attributes (mainly in /block/blk-merge.c). Additionally,

new nvme_opcode and related functions are added to support the remap command at the

NVMe driver layer (mainly in /block/blk-mq.c and /drivers/nvme/host/core.c).

The capacity-variant SSD is built on top of the FEMU [95]. SSD reliability enhancement

techniques such as ECC and read retry ensure data integrity. To implement the error model,

we use the additive power-law model proposed in prior works [79, 101, 115] that considers

wear, retention loss, and disturbance to quantify RBER, as shown in the following equa-

tion:

RBER(cycles, time, reads)

= ε+ α · cyclesk (wear)

+ β · cyclesm · timen (retention)

+ γ · cyclesp · readsq (disturbance)

(5.2)

The parameters used are particular to a real 2018 TLC flash chip [79], and the device in-

ternally keeps track of cycles, time, and reads for each block. During a read operation,

read retry is applied if the error exceeds the ECC strength. We consider each read retry

will lower the error rate by half [79, 134] and the maximum amount of recovery is limited



85for a single read retry so that blocks have more fine-grained error states.

We modify five major software components to support capacity variance.

• We make changes to the Linux kernel v5.15 to provide an ioctl-based user-space

API supporting logical partition reduction. Users can specify the shrinking size and

issue capacity reduction commands through this API.

• We modify the F2FS to handle address remapping triggered by capacity variance

and revise its discard scheme.

• We extend the f2fs-tool (f2fs format utility) to support the CV-specific functional-

ities, such as initializing a variable logical partition and updating the attributes that

control discard policies.

• We implement CV-SSD mode in FEMU, adding flash reliability enhancement tech-

niques, error models, wear leveling, bad block management, and device lifetime fea-

tures.

• We modify NVMe device driver and introduce new commands to NVMe-Cli [125], to

support capacity variance. The SMART [124] command is also extended to export

more device statistics for capacity management.

5.5. Evaluation of Capacity Variance

We first describe our experimental setup and methodology, then present our evaluation

results and demonstrate the effectiveness of capacity variance.

5.5.1. Experimental Setup and Methodology

Table 5 outlines the system configurations for our evaluation. For the traditional SSD,

an adaptive WL, PWL [25], is used to even the wear among blocks. The error correction
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tion are used for traditional SSDs.

PC platform

Parameter Value Parameter Value
CPU name Intel Xeon 4208 Frequency 2.10GHz
Number of cores 32 Memory 1TiB
Kernel Ubuntu v5.15 ISA X86_64

FEMU

Parameter Value Parameter Value
Channels 8 Physical capacity 128 GiB
Luns per channel 8 Logical capacity 120 GiB
Planes per lun 1 Over-provisioning 7.37%
Blocks per plane 512 Garbage collection Greedy
Pages per block 1024 Program latency 500 µs
Page size 4 KiB Read latency 50 µs
Superblock size 256 MiB Erase latency 5 ms
Endurance 300 Wear leveling PWL [25]
ECC strength 50 bits Block allocation Youngest first

code (ECC) for both Tr-SSD and CV-SSD is configured to tolerate up to 50-bit errors

per 4 KiB data, and errors beyond the correction strength are subsequently handled by

read retry. We use 17 different workloads in our evaluation: (1) 4 FIO [61] workloads (Zip-

fian and random, each with two different utilization); (2) 3 Filebench [161] workloads; (3)

2 YCSB workloads [12] (YCSB-A and YCSB-F); and (4) 8 key-value traces from Twit-

ter [175].

We compare CVSS with three different techniques: (1) TrSS, a traditional storage system

with vanilla F2FS plus a fixed-capacity SSD; (2) AutoStream [174]; (3) ttFlash [173]. The

evaluation comparisons are selected based on their broader applicability and implemen-

tation simplicity of the multi-stream interface (represented by AutoStream [174]) and the
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eral and widely used methods such as PCStream [85], LinnOS [55], and IODA [96]. Specif-

ically, AutoStream [174] uses the multi-stream interface [76] and automatically assigns a

stream ID to the data based on the I/O access pattern. The SSD then places data ac-

cordingly based on the assigned ID to reduce write amplification and thus, improve per-

formance. On the other hand, ttFlash [173] reduces the tail latency of SSDs by utilizing a

redundancy scheme (similar to RAID) to reconstruct data when blocked by GC. Since the

original ttFlash is implemented on a simulator, we implement its logic in FEMU for a fair

comparison.

To perform a more realistic evaluation, it is necessary to reach an aged FS and device

state. Issuing workloads manually to the system is prohibitively expensive, as it takes

years’ worth of time. Moreover, this method lacks standardization and reproducibility,

making the evaluation ineffective [1]. We extensively use aging frameworks in our evalu-

ation. Prior to each experiment, we use impression [1] to generate a representative aged

file system layout. After file system aging, the fast-forwardable SSD aging framework (FF-

SSD) [67] is used to reach different aged states for SSD. The aging acceleration factor

(AF) is strictly limited to 2 to maintain accuracy. Workloads will run until the underly-

ing SSD fails.

We design the experiments with the following questions:

• Can CVSS maintain performance while the underlying storage device ages? (§ 5.5.2)

• Can CVSS extend the device lifetime under different performance requirements?

(§ 5.5.3)

• What are the tradeoffs in CVSS design? (§ 5.5.4)
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In this section, we evaluate the effectiveness of CVSS in maintaining performance and

avoiding fail-slow symptoms under synthetic and real workloads.

FIO

We first examine the performance benefit of capacity variance under Zipfian workloads

with two different workload sizes: 38GB (utilization of 30%) and 90GB (utilization of

70%). For this experiment, FIO continuously issues 16KB read and write requests to the

device. We use the default setting of FIO and the read/write ratio is 0.5/0.5.

Zipfian. Figure 37 shows the read throughput under different aged states of TrSS and

CVSS, in terms of terabytes written (TBW). We measure the performance until it drops

below 50% of the initial value where no aging-related operations are performed. The green

dotted line shows the amount of physical capacity that has been reduced within the CV-

SSD and the straight vertical line represents the trigger of CVdegraded.

We observe that TrSS and CVSS behave similarly at first where both CV-SSD and Tr-

SSD are relatively young. However, for TrSS, the read performance degrades gradually. As

Tr-SSD gets aged, the amount of error corrected during each read operation increases and

thus involves more expensive read retry processes. On the other hand, CV-SSD effectively

trades the capacity for performance. The performance is maintained by excluding heav-

ily aged blocks from use. Later, CVdegraded is triggered to maintain a particular amount of

capacity for the workloads. During this stage, blocks are used more evenly and the wear

accumulates within the device. In this case, performance is traded for capacity in order

to avoid data loss. However, even in this mode, CVSS delivers better performance com-

pared to TrSS, thanks to the previous mapping out of most unreliable blocks. Overall, the

read throughput of CVSS outperforms TrSS by up to 0.72× with the same amount of host
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(a) Zipfian (utilization 30%) (b) Zipfian (utilization 70%)

Figure 37: Read throughput under FIO Zipfian workloads. In CVSS, the performance is
maintained by trading capacity. The straight vertical line represents the trigger of the
CVdegraded mode. After CVdegraded, the future capacity reduction is slowed down but the
performance is compromised.

(a) Random (utilization 30%) (b) Random (utilization 70%)

Figure 38: Read throughput under FIO random workloads. CVSS delivers up to 0.6×
(left) and 0.7× (right) higher performance compared to TrSS, under the same amount of
host writes.

writes.

Random. Figure 38 shows the measured read performance under random I/O. The con-

figuration is similar to the previous case. As in-used blocks get aged, the read performance

of TrSS degrades gradually and the fail-slow symptoms manifest. With the same amount

of host writes, CVSS delivers a 0.6× and a 0.7× higher throughput at most than TrSS un-



90

(a) Fileserver (b) Netsfs

(c) Varmail (d) Host I/Os blocked by error
handling under varmail

Figure 39: Performance results under Filebench workloads. CVSS reduces the average
latency by 8% under fileserver workload (Figure 39a), 24% under netsfs workload (Fig-
ure 39b), and 10% under varmail workload (Figure 39c) compared to TrSS throughout the
devices’ lifetime. Before CVdegraded is triggered, CVSS–normal reduces the average latency
by 32% under netsfs workload. Figure 39d shows the percentage of host I/Os blocked by
read retry operations under varmail workload. Other workloads show a similar pattern.

der the utilization of 30% and 70%, respectively.

Figure 40 compares the average write performance over the measurement. For Tr-SSD,

when WL is initiated, data are relocated within the device, which decreases the through-

put by 0.6×. Without WL, CV-SSD provides a more stable and better write performance

than Tr-SSD. Overall, the write throughput of CVSS outperforms TrSS by 0.12× on aver-

age.
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Figure 40: Average write throughput under FIO workloads. For TrSS, when wear leveling
is triggered, the write throughput drops by 0.6×; on the other hand, by forgoing WL, CV-
SSD provides a more stable and better write performance.

Filebench

We now use Filebench [161] to evaluate the capacity-variant system under file system metadata-

heavy workloads. We use three pre-defined workloads in the benchmark, which exhibit dif-

ferences in I/O patterns and fsync usage.

Figures 39a, 39b, and 39c show the CDF of operation latency under fileserver, netsfs,

and varmail workloads throughout the devices’ life. In particular, CVSS–normal represents

the result before CVdegraded is activated and CVSS represents the overall result. We use

the default setting of Filebench, which measures the performance by running workloads

for 60 seconds. Random writes are used to age CV-SSD and Tr-SSD. The measurement is

performed after every 100GB of random data written until the device fails. The utilization

for both TrSS and CVSS is 50%.

Compared to TrSS, CVSS reduces the average response time by 32% before the degraded

mode is triggered and by 24% over the entire lifetime under netsfs workload, as shown in

Figure 39b. The netsfs workload simulates the behavior of a network file server. It per-

forms a more comprehensive set of operations such as application lunch, read-modify-
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devices more intuitively. Overall, CVSS reduces the average latency by 8% in the fileserver

case (Figure 39a), and 10% in the varmail case (Figure 39c).

CV-SSD maps out blocks once their RBER exceeds 5% by default, while Tr-SSD only

maps them out when their erase counts exceed the endurance limit, leading to more ex-

pensive error correction operations. The increased error correction operations not only

affect the latency of the ongoing host request but also create backlogs in IO traffic. Fig-

ure 39d shows the percentage of host I/Os blocked by read retry operations measured in-

side FEMU under the varmail workload. In TrSS, more than 20% of I/O requests are de-

layed by SSD internal read retry, while it is no more than 5% in CVSS.

Twitter Traces

The previous sections examine CVSS using block I/O workloads and file system metadata-

heavy workloads. In this section, we evaluate CVSS and compare it with AutoStream [174]

and ttFlash [173] at the overall application level. We use a set of key-value traces from

Twitter production [175]. The Twitter workload contains 36.7 GB worth of key-value pairs

in total. We first load the key-values pairs and then start and keep feeding the traces to

RocksDB until the underlying SSD fails.

Figure 41 compares the average KIOPS over the entire device lifetime. Overall, capacity

variance improves the throughput by 0.49× – 3.16× compared to TrSS; on the other hand,

AutoStream and ttFlash present limited effectiveness in mitigating fail-slow symptoms.

In particular, Trace38 highlights the benefits of capacity variance, achieving a 3.16× bet-

ter throughput than the fixed-capacity storage. For RocksDB, point lookups may end up

consulting all files in level 0 and at most one file from each of the other levels. Therefore,

as the Tr-SSD ages, a single Get() request can cause multiple physical reads and each of

them can trigger SSD read retry several times, degrading the read performance drastically.
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utilization inconsistency (i.e., 1
n

∑n
Observation=1 utilSSD − utilFS) between FS and SSD, as

shown in Figure 43. That is because of the high request rate during the experiments and

F2FS only dispatches discard command when the device I/O is idle, which not only de-

creases SSD GC efficiency but also makes wear leveling more likely to misjudge data alive-

ness, limiting its effectiveness in maintaining capacity. During the experiments, the WAF

of TrSS can be as high as 6.79, while only 1.12 for CVSS.

5.5.3. Lifetime Extension

In this section, we investigate how CVSS extends device lifetime given different perfor-

mance requirements and thus leads to a longer replacement interval for SSD-based storage

systems. We compare three different configurations: CVSS, TrSS, and AutoStream [174]

in this evaluation since ttFlash introduces additional write (wear) overhead coming from

RAIN (Redundant Array of Independent NAND) even for a small write [173]. The work-

loads used are similar to § 5.5.2.

Figure 42 shows the TBW before the device performance drops below 0.8, 0.6, 0.4, and

0 of the initial state. In particular, 0 represents the case where no performance require-

ment is applied so the workload runs until the underlying SSD is unusable. In cases of

Figure 41: Performance results under Twitter traces. Capacity variance outperforms Au-
toStream and ttFlash and improves the throughput by 1.42× on average compared to
TrSS.
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device lifetime, even when high performance is required. In Figure 42a, the device fails af-

ter accommodating 10 TB host writes for TrSS and 18 TB for AutoStream, considering

the performance requirement of 0.8. On the other hand, CVSS accommodates 28 TB host

writes with the same performance requirement, outlasting TrSS by 180% and AutoStream

by 55%. Similarly, in Figure 42c, CVSS outlasts TrSS by 270% and AutoStream by 50%.

In the high device utilization cases (as shown in Figure 42b and 42d), CVSS outlasts

TrSS by 123% and AutoStream by 55% on average with the highest performance require-

ment. In Figure 42b, before the device becomes unusable, CVSS accommodates 10.4 TB

more in host writes compared to TrSS and 12 TB more compared to AutoStream. In our

experiments, we found AutoStream achieves a longer lifetime than TrSS except for the no

performance requirement case. In AutoStream, data are placed based on their characteris-

tics, which in turn triggers more data relocation towards the end for wear leveling. Over-

all, with the highest performance requirement, CVSS ingests 168% host data more com-

pared to TrSS and 57% more compared to AutoSteam on average, which in turn prolongs

the replacement interval and reduces the cost.

5.5.4. Sensitivity Analysis

We next investigate the tradeoffs in CVSS regarding the block retirement threshold, the

strength of ECC engine, and the impact of different GC formula weights.

Block Retirement Threshold

The mapping-out behavior for aged blocks in CV-SSD is controlled by a user-defined thresh-

old. By default, blocks are mapped out and turn to a retired state once their RBER ex-

ceeds 5%. In this section, we investigate how this threshold affects the performance and

device lifetime.
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(a) Zipfian (30% utilization) (b) Zipfian (70% utilization)

(c) Random (30% utilization) (d) Random (70% utilization)

Figure 42: Terabytes written (TBW) with different performance requirements. Compared
to TrSS and AutoStream, CVSS significantly extends the lifetime while meeting perfor-
mance requirements.

We utilize YCSB-A and YCSB-F with their data set configured to have thirty million key-

value pairs (10 fields, 100 bytes each, plus key). We compare three different configurations:

(1) TrSS, vanilla F2FS plus a fixed-capacity SSD; (2) CVSS(4%), CVSS with a higher re-

liability requirement. Superblocks will be mapped out if RBER is greater than 4%; (3)

CVSS(6%), CVSS with a lower reliability requirement. Superblocks will be mapped out if

RBER is greater than 6%.

Figure 44 shows the latencies at major percentile values (p75 to p99) and the device life-

times for each workload. As shown in Figures 44a and 44b, CVSS(4%) reduces p99 la-

tency by 51% for the YCSB-A workload and by 53% for the YCSB-F workload compared
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Figure 43: The average difference in FS and SSD utilization under Twitter traces. The
original discard policy shows higher utilization inconsistency between FS and SSD, making
data aliveness misjudged.

(a) Read latency (YCSB-A) (b) Read latency (YCSB-F)

(c) Lifetime (YCSB-A) (d) Lifetime (YCSB-F)

Figure 44: Sensitivity analysis on the mapping-out threshold in CVSS. CVSS with a
higher reliability requirement, CVSS(4%), achieves better performance but with a rela-
tively shorter lifetime compared to CVSS(6%) because blocks are retired earlier.
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Figure 45: The average number of read retries triggered per GiB read over the device’s
lifetime. The x-axis represents different ECC strengths in bits.

to TrSS, which are 44% and 40% for CVSS(6%). With a higher reliability requirement,

blocks are retired earlier in CVSS(4%), which in turn causes a relatively shorter device

lifetime than CVSS(6%). As depicted in Figures 44c and 44d, CVSS(6%) and CVSS(4%)

ingests 3.27× and 2.68× host I/O than TrSS on average, respectively.

ECC Strength

We now study the impact of ECC strength on SSD error handling and demonstrate the

usefulness of capacity variance in simplifying SSD FTL design. As discussed earlier, CVSS

excludes aged blocks from use and thus incurs fewer error correction operations. This fur-

ther allows the CV-SSD to be equipped with a less robust error-handling mechanism with-

out compromising reliability.

Figure 45 compares the average number of read retries triggered per GiB read over the de-

vice’s lifetime for CVSS with ECC strength set as up to 50 bits corrected per 4KiB and

TrSS with ECC strength set to 50 – 90 bits. The results are measured under the FIO Zip-

fian read/write workload with device utilization of 30%. We make two observations. First,

with the same ECC capability, TrSS(50) performs 1.93× more read retry operations than

CVSS(50). Second, TrSS requires a stronger ECC engine to improve the efficiency of the
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with a weaker ECC engine, CVSS(50) achieves similar performance to TrSS(90).

GC Formula

As described in § 5.3.2, the GC formula consists of three parameters: Winvalidity, Waging,

and Wread. We analyze how different weights used in GC formula affect the performance

of CVSS in this section. We compare the configured weights with three different config-

urations: (1) GC prioritizes blocks with more invalid pages, with Winvalidity = 0.6, Wread

= 0.2, and Waging = 0.2; (2) GC prioritizes blocks with more reads, with Winvalidity = 0.2,

Wread = 0.6, and Waging = 0.2; (3) GC prioritizes blocks with more erases, with Winvalidity

= 0.2, Wread = 0.2, and Waging = 0.6. FIO is used to generate Zipfian read/write work-

loads to the device. Figure 46 illustrates the measured WAF and read retry. Overall, the

configured weights result in a lower WAF and fewer read retry operations.

In particular, compared to the configured case, the high Winvalidity case achieves a lower

WAF but involves 0.78× more read retry operations. This is because read-intensive data

are stored in aged blocks. For the high Wread case, it triggers fewer read retry operations

but decreases the cleaning efficiency of GC since the invalidity is not adequately consid-

ered during the victim selection. In the high Waging case, GC always selects the most aged

blocks, leading to a significant increase in WAF and faster device aging. In contrast, the

configured weights balance WAF and read retry within the device.

5.6. Discussion

In this section, we discuss different use cases of capacity variance and its intersection with

ZNS and RAID systems.

Use cases of capacity variance. CVSS aims to significantly outperform fixed-capacity

systems in the best case, and perform at a similar level in the worst case. The degraded
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pacity for the host. CVSS would be most useful for cases where IO performance is bottle-

necked but has spare capacity. For instance, Haystack is the storage system specialized for

new blobs (Binary Large Objects) and bottlenecks on IOPS but has spare capacity [131].

Moreover, for SSD vendors, capacity variance can simplify SSD design, as it allows for the

tradeoff of performance and reliability with capacity. For data centers, introducing capac-

ity variance can automatically exclude unreliable blocks and enable easy monitoring of de-

vice capacity, resulting in longer device replacement interval and mitigating SSD failure-

related issues in data center environments. Lastly, for desktop users, capacity variance ex-

tends the lifetime of SSDs significantly and thus reduces the overall cost of storage.

ZNS-SSD. Capacity variance can be harmonious with ZNS. Specifically, due to a wear-

out, a device may (1) choose to take a zone offline, or (2) report a new, smaller size for a

zone after a reset. Both of these result in a shrinking capacity SSD. However, there is no

software that can handle capacity reduction for ZNS-SSDs currently. The offline command

simply makes a zone inaccessible and data relocation has to be done by users. Moreover,

file systems are typically unaware of this change except for ZoneFS [89]. The capacity-

variant SSD interface is a more streamlined solution where the software and the hardware

cooperate to automate the process.

Capacity variance with RAID. The current CVSS does not support RAID systems.

Existing RAID architectures require symmetrical capacity across devices and its overall ca-

pacity depends on the underlying minimal-capacity device. For parity RAID, the invalid

data can not always be trimmed because it may be required to ensure the parity correct-

ness. We will investigate the capacity-variant RAID system as our next direction, in which

we consider modifying the disk layout and data placement scheme to support dynamically



100

Figure 46: The WAF and read retries triggered under different weights used for GC for-
mula.

changing asymmetrical capacity with multiple heterogeneous CV-SSDs.

5.7. Conclusion

The basic principle behind a capacity-variant storage system is simple: relax the fixed-

capacity abstraction of the underlying storage device. We implement this idea and de-

scribe the key designs and implementation details of a capacity-variant storage system.

Our evaluation result demonstrates how capacity variance leads to performance advantages

and shows its effectiveness and usefulness in avoiding SSD fail-slow symptoms and extend-

ing device lifetime. We expect new optimizations and features will be continuously added

to the capacity-variant storage system.
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paRAID: An Efficient and Sustainable Storage

Architecture with Heterogeneous SSDs

6.1. Introduction

All-flash arrays (AFAs), leveraging the high performance, reliability, and compact form

factor of solid-state drives (SSDs), have emerged as a promising solution to meet the grow-

ing storage demand in the big data era [64, 83]. Concurrently, data centers need to reduce

carbon emissions, particularly for flash, which accounts for 40% of embodied carbon in

servers [111]. However, decreasing carbon emissions from AFAs is difficult, especially since

traditional AFA solutions assume homogeneous storage components and uniformly dis-

tribute IOs [64, 83, 121, 128, 164]. This architecture limits the opportunity to exploit the

heterogeneity of modern SSDs [79] and the distinct data characteristics observed in real

workloads [86], causing inefficiencies and exacerbating the carbon footprint of storage sys-

tems.

Specifically, modern SSDs exhibit significantly greater heterogeneity compared to tradi-

tional hard disk drives (HDDs), where variations between models are minimal [46, 67, 68,

103, 132]. As illustrated in Figure 47, advancements in flash density result in significant

capacity variations across different models – even within the same product line. Conse-

quently, upgrading a single disk in an AFA often requires replacing all disks and dispos-

ing of the old devices [71, 103, 170, 183], leading to increased embodied carbon emissions

and cost. Moreover, the performance characteristics of modern SSDs vary significantly due

to different factors such as the type of flash memory cells used, hardware configurations

(e.g., number of channels/dies and block size), and firmware management (e.g., FTL algo-
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Figure 47: Trends in SSD capacity over the past decade. Each bar represents different ca-
pacity models for the same SSD. Variations in SSD capacity have doubled each year, and
significant differences in device capacities can be observed for recent SSD products. These
factors contribute to the growing asymmetry in storage device capacities.

rithms).

On the other hand, the overall architecture of existing AFA systems is built around the

assumption that the underlying storage components are homogeneous. A common N -disk

RAID maintains a deterministic stripes-to-disk mapping that uniformly distributes data

and parity chunks across all disks [179]. This architecture results in significant disk under-

utilization when considering heterogeneity among storage devices, particularly for modern

SSDs. The balanced data layout requires the underlying storage devices to be roughly the

same size. Otherwise, the aggregate capacity is determined by the minimal capacity de-

vice [121], making devices with larger capacity underutilized. This issue becomes worse

with the increasing scale of AFAs and SSD capacities. Specifically, emerging AFAs, such

as NetApp AFF [122] and EMC VMAX [33], contain 90 or more SSDs. For the latest

SSD shown in Figure 47, capacity utilization drops below 50% when used with previous

SSD products. Such underutilized capacity further leads to an additional 1843.2 kg em-
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cells [48, 111].

Moreover, by evenly spreading data across the disks, the overall system performance is

bottlenecked by the poor-performing drives. We illustrate this by testing the popular Linux-

MD software RAID5 array built on heterogeneous SSDs. Figure 48a shows the perfor-

mance profile of two types of SSD products used for the experiments, measured by fio [61].

The read throughput of the NVMe SSD outperforms the SATA SSD by 5.31× and 5.35×

with 512 KiB and 1 MiB request sizes, respectively. We then compare three RAID5 sys-

tems: (1) SATA: consisting of 3 SATA SSDs; (2) SATA+NVMe: consisting of 1 SATA

SSD + 2 NVMe SSDs; and (3) NVMe: consisting of 3 NVMe SSDs. As shown in Fig-

ure 48b, although utilizing two NVMe SSDs, the performance of the SATA+NVMe RAID

remains similar to the SATA RAID and achieves only 16.2% and 16.1% of the NVMe RAID

performance, for partial-stripe read and full-stripe read, respectively. In this configuration,

the spare device bandwidth leads to approximately 5.04 kg CO2 per terabyte of device ca-

pacity annually [111]. As a result, with the conventional RAID solution, the performance

is determined by the lowest-performance device, resulting in significant under-utilization

and poor sustainability of storage resources.

As the latest Linux MD is capable of supporting arrays with 384 component devices [100],

large cluster storage systems almost always include a heterogeneous mix of storage de-

vices [107, 170]. Additionally, real-world data often exhibit varying lifetimes and tempera-

tures, which are not uniformly accessed and affect overall system performance differently.

For instance, data services at Google involve hot/warm/cold/frigid IO accesses [86], and

modern filesystems internally categorize data into different types (e.g., metadata, three

data logs, and three node logs for F2FS [90]), each with a different temperature. Conse-

quently, such heterogeneous environments inevitably lead to utilization issues and poor
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(a) Performance comparison of
SATA and NVMe SSDs.

(b) Performance comparison of three RAID5 systems.
SATA (3 SATA SSDs) vs. SATA+NVMe (1 SATA SSD
and 2 NVMe SSDs) vs. NVMe (3 NVMe SSDs).

Figure 48: Performance bottleneck caused by disk heterogeneity with Linux MD. Fig-
ure 48a shows the read performance of a SATA and an NVMe SSD. Figure 48b demon-
strates that the overall RAID performance is determined by the device with the lowest
performance with conventional RAID solutions.

sustainability with existing RAID architectures that uniformly use underlying storage

components. Moreover, while ongoing works [141] leverage the latest data placement tech-

nologies, enabled by NVMe Flexible Data Placement (FDP) interface, to enhance sustain-

ability, these solutions are incompatible with conventional devices.

In response to these challenges, this paper presents paRAID (placement asymmetric RAID),

a new RAID construction mechanism that exploits disk and data heterogeneity to im-

prove performance and sustainability for modern AFAs. paRAID is designed to asym-

metrically distribute data across the array to fully utilize the capacity of each SSD, and

mathematically guarantees a maximum logical volume exported to the host. To prevent

performance bottlenecks, paRAID maintains multiple stripe groups based on their per-

formance characteristics and differentially exports the address space of each data stripe

to the host, allowing for a performance-aware logical volume. To reduce carbon emissions

and overhead from metadata, paRAID learns the mapping information between user ad-
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storage space for logical-to-physical (L2P) and physical-to-logical (P2L) address transla-

tion. The learned addressing approach further enables a more performance-optimized data

placement, which adaptively tunes the data layout based on workloads, leading to better

utilization of higher-performance devices.

The contributions of this paper are as follows.

• We study and identify the inefficiency of conventional RAID solutions when consider-

ing disk heterogeneity for modern SSDs through real system deployment. (§ 6.3)

• We present paRAID, to our knowledge, the first RAID architecture designed to lever-

age a mix of heterogeneous SSDs to improve overall system performance and sustain-

ability by distributing data asymmetrically. The artifacts of paRAID will be open-

sourced. (§ 6.4)

• We evaluate and quantitatively demonstrate the effectiveness of paRAID in manag-

ing heterogeneous SSDs, by comparing it against different state-of-the-art solutions

under recent real-world I/O workloads. (§ 6.5)

6.2. Background

In this section, we first introduce the background for RAID and discuss the heterogeneous

nature of modern SSDs. We then present the trend of carbon emissions for flash-based

storage. Finally, we briefly review existing approaches for managing and optimizing AFA

storage.

6.2.1. RAID

Redundant array of independent disks (RAID) is a classic solution that manages an array

of SSDs to improve performance, reliability, and capacity simultaneously [164]. In RAID,
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mance, referred to as RAID levels. The RAID driver maintains metadata that converts

logical block addresses (LBAs) from the host into physical block addresses (PBAs) on the

actual disks in the array.

RAID-5 and RAID-6 are the most commonly used parity-based RAID levels to balance

throughput, redundancy, and space overhead [147]. For an N -drive RAID-5 array, each

data stripe consists of N − 1 data chunks and one parity chunk, which rotates for each

stripe to eliminate any parity bottlenecks in the array [9]. As a result, RAID-5 offers re-

dundancy against one drive failure with 1/(N − 1) space overhead. In theory, RAID-5 can

deliver read throughput that scales up to N times and write throughput that scales up to

N − 1 times compared to the throughput of a single device [147].

However, in practice, this throughput can hardly be achieved even without drive failures [64,

96, 179]. There are three write modes in parity-based RAID: full-stripe write, read-modify-

write, and reconstruct write. For a partial-stripe write (read-modify-write and reconstruct

write) where only a subset of the data chunks of a stripe is written, parity chunks or old

data chunks need to be read from corresponding drives to generate new parity chunks,

thus amplifying the amount of I/Os. In terms of read, achieving ideal performance relies

on the assumption that the underlying drives can simultaneously deliver consistent perfor-

mance. However, this assumption does not hold true in practice, particularly with modern

SSDs. We will discuss this impact in the subsequent section.

6.2.2. SSD Heterogeneity

NAND flash memory density continues to scale to meet the growing storage demands of

data-intensive applications. Over the past decade, the density of planar flash increases

by more than 1000×, driven by advancements in both manufacturing technology and cell

density [68, 106]. With that, SSD capacity has been doubling annually, and recent models
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or more.

In addition to capacity, SSDs inherently exhibit performance variability from the time of

manufacturing due to differences in the NAND flash memory cells and variations in the

firmware [24, 144]. Modern SSDs composed of persistent memory (PM), triple-level cell

(TLC), or quadruple-level cell (QLC) flash memory present very different performance

characteristics. A recent study has shown that the performance differential between two

commodity SSD devices can be as high as 5.1× [164]. Moreover, even using the same type

of flash memory cells, the overall performance of an SSD varies depending on the device

configuration (e.g., number of channels/dies, block size, FTL algorithms). Recent SSDs

have shown performance variations of up to 22% among devices within the same product

line [113].

A recent study has shown that the performance differential between two commodity SSD

devices can be as high as 5.1× [164]. Thus, to enhance overall resource utilization, it is of-

ten recommended to construct RAID systems using disks of the same make and model [71,

99]. Nevertheless, the issue of heterogeneous performance persists even among disks of

identical models. Prior research has shown that SSDs can suffer from a permanent per-

formance degradation caused by flash memory errors [46, 67, 132].

6.2.3. Carbon Footprint of Flash

Data centers are projected to emit more than 33% global emissions by 2050 [111] and

flash-based storage is responsible for 33-80% of a computer’s carbon footprint [186]. The

carbon footprint of an SSD consists of embodied emissions from hardware manufactur-

ing and infrastructure activities [111] and operational emissions from device usage. As

flash annual capacity production exceeds 765 Exabytes, the associated embodied emissions

amount to 122M metric tonnes of CO2 [186], equivalent to the average annual CO2 emis-
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Data
layout

Issue
tackled

Disk
hetero

mdraid [121] RAID — ✗

FusionRAID [64] MOLS-based I/O determinism ✗

StRAID [164] RAID I/O concurrency ✗

LogRAID [128] Log-structured Small writes ✗

SWAN [83] 2D Array GC overhead ✗

Tiger [71] Pool System reliability ✗

paRAID Adaptive Storage utilization ✓

sions of 28M people [155] . By 2030, this figure is expected to rise to the equivalent of over

150M people [38]. Such an exponential growth must require the development of more sus-

tainable designs.

To reduce carbon emissions, companies including Meta [112] and Microsoft [114] are adopt-

ing renewable energy sources such as solar and wind [49, 111]. Google [43] and AWS [4]

aim to complete their transition to renewable energy by 2030. While these strategies are

effective at reducing operational emissions, they do not alleviate the embodied emissions of

data centers. In particular to flash-based storage, improving overall utilization and reduc-

ing DRAM consumption, whose embodied carbon per bit is 12× higher, have been iden-

tified as key measures to amortize and mitigate flash storage’s carbon footprint [48, 111,

186].

6.2.4. Related Works

As summarized in Table 6, AFAs have been extensively studied, with approaches primar-

ily categorized into three groups: (1) enhancing performance by reducing software over-

head [64, 164, 179]; (2) taming tail-latency by alleviating GC and small writes overhead [83,

96, 128]; (3) improving reliability by distributing parity unevenly across the devices [9] or

adopting disk-adaptive data redundancy scheme [71, 72, 74]. Approaches in the first two

groups typically assume that disk components have the same capacity and comparable
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system.

Reducing software overhead. Both RAID+ [179] and FusionRAID [64] utilize the math-

ematical properties of mutually orthogonal Latin squares (MOLS) [179] to spread I/O to a

larger disk pool in a balanced manner. Unfortunately, MOLS requires each device to have

exactly the same size [109]. FusionRAID relies on latency spike detection and requests

redirection to avoid drives experiencing degraded performance, causing additional system

overhead. Moreover, to reduce mapping overhead, it restricts a relatively large block size.

On the other hand, StRAID [164] addresses the lock contentions in Linux-MD [121] by

assigning a dedicated thread for each stripe write. It also adopts a two-phase write mecha-

nism to opportunistically aggregate I/Os.

Maintaining performance consistency. LogRAID [128] employs a log-structured de-

sign to optimize the performance of small partial stripe writes. SWAN [83] organizes SSDs

into foreground and background groups. The foreground group is used to accommodate

host writes and only SSDs in background groups are allowed to perform garbage collec-

tion (GC). It aims to alleviate GC interference without considering disk heterogeneity.

IODA [96], on the other hand, proposes a busy time model to coordinate SSD internal

tasks and achieve I/O determinism. The model considers devices to have the same capac-

ity and performance.

Improving system reliability. Diff-RAID [9] distributes parity blocks unevenly across

the array and maintains an age differential to lower correlated failures in SSDs. However,

it concerns the case where the array has operated in the degraded mode — data can not

be reconstructed because of correlated failures once a drive fails.

Several works [71, 72, 74] propose disk-adaptive redundancy schemes to ensure data reli-
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on disks’ annualized failure rates (AFRs). These approaches contain disks from only one

make/model. Works within this group mainly focus on addressing disk heterogeneity in

terms of reliability rather than capacity and performance.

6.3. Experimental Study on RAID with Heterogeneous SSDs

As introduced earlier, conventional RAID solutions assume the underlying storage com-

ponents are homogeneous and distribute I/O requests from applications evenly across the

array. In this section, we begin with an experimental study to evaluate the performance of

RAID with heterogeneous SSDs and demonstrate that the existing RAID architecture fails

to effectively leverage the heterogeneity inherent in modern SSDs. We then analyze the ef-

fect of under-utilization caused by disk heterogeneity on the system’s overall sustainability.

6.3.1. Performance Analysis

Experiments setup. We focus on sequential read workloads to mitigate the impact of SSD

background operations (e.g., garbage collection) and analyze the performance of conven-

tional RAID architectures with heterogeneous SSDs. We configure a set of (2+1) RAID5

(i.e., 2 data chunks and 1 parity chunk) arrays with various types of SSD products (9 off-

the-shelf SSDs in total) using the default Linux mdadm [121] software RAID controller.

Table 7 summarizes the characteristics and the usages of the experimented SSDs. To show

Table 7: Performance characteristics and usage of devices used in the experimental study.
Degraded refers to that the device remains operational but experiences reduced perfor-
mance.

Device
(# used)

4K/64K read
BW (GiB/s)

Disk
condition Usage

NVMe0 (3) 0.73 / 3.33 Normal Homogeneous NVMe RAID
SATA0 (3) 0.44 / 0.53 Normal Homogeneous SATA RAID
NVMe1 (1) 0.73 / 2.58 Normal Heterogeneous NVMe RAID
SATA1 (1) 0.33 / 0.48 Normal Heterogeneous SATA RAID

NVMe0-degraded (1) 0.65 / 1.34 Degraded RAID with degraded device
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(a) NVMe-only SSD RAID (b) SATA-only SSD RAID

Figure 49: In Figure 49a, using one NVMe1 SSD results in a 41% degradation in over-
all performance with the conventional RAID architecture. In Figure 49b, with only 0.05
GiB/s bandwidth difference between SATA0 and SATA1 SSD, it leads to an 11% reduc-
tion in the overall RAID performance.

the inefficiency of conventional RAID architectures in managing heterogeneous SSDs, we

consider the following three different configurations.

Case #1: RAID with a mix of NVMe and SATA SSDs. As discussed in Section § 6.1 (Fig-

ure 48b), the conventional RAID architecture fails to deliver performance improvements

even when two NVMe SSDs are utilized. In particular, for full-stripe read workloads, the

total RAID bandwidth reaches only 1.48 GiB/s, whereas the aggregated bandwidth of the

devices is 7.19 GiB/s, resulting in an NVMe device utilization rate of less than 17%.

Case #2: RAID with NVMe-only SSDs or SATA-only SSDs. We next investigate the sce-

nario where various SSDs are used, but all belonging to the same type (i.e., either NVMe

or SATA). This experiment eliminates the performance discrepancies arising from different

storage interfaces.

Figure 49a compares the performance of the heterogeneous NVMe RAID (2 NVMe0 SSDs

+ 1 NVMe1 SSD) against the homogeneous NVMe RAID (3 NVMe0 SSDs). The lines il-
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gap between the two lines indicates the difference in aggregated device bandwidth between

the heterogeneous and homogeneous RAID configurations.

Notably, the total device bandwidth of the heterogeneous NVMe-SSD RAID reaches up to

9.24 GiB/s, while the configured RAID only achieves 6.5 GiB/s under full-stripe reads and

5.7 GiB/s under partial-stripe reads. The bandwidth utilization is only 57% for a single

NVMe0 SSD and 61% for the overall RAID under partial-stripe read workloads. Addition-

ally, using one NVMe1 SSD results in a 41% degradation in overall performance with the

conventional RAID architecture.

As shown in Figure 49b, the performance degradation caused by device heterogeneity also

occurs in the SATA-SSD RAID, but to a smaller degree than in the NVMe-SSD RAID.

This is primarily due to the relatively small performance difference between SATA0 SSD

and SATA1 SSD, which is only 0.05 GiB/s. However, it still leads to an 11% reduction in

the overall RAID performance. Compared with the NVMe-SSD RAID, it indicates that

the impact of performance heterogeneity in RAID will become increasingly evident as SSD

technology continues to advance.

Case #3: RAID with SSDs of the same model. The previous cases demonstrate the inef-

ficiency of traditional RAID solutions when different SSD products are deployed. In this

experiment, we show that the challenge of heterogeneous performance persists even when

disks of identical models are used, due to their different disk conditions. Specifically, we

configure a RAID5 array using three NVMe0 products. Among these, two SSDs are rela-

tively new, with no more than 5% percentage used (in terms of endurance) and without

any errors logged according to their S.M.A.R.T. [124] attributes, while one SSD has 63 de-

vice errors logged. This scenario can happen in large-scale storage clusters, where same

model SSDs are deployed, but some exhibit anomalous performance [46, 68, 107, 170].
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Figure 50: The challenge of performance heterogeneity persists even when disks of identi-
cal models are used, due to different disk conditions.

As illustrated in Figure 50, the RAID array consisting of identical SSD models, with one

experiencing degraded performance (NVMe0-degraded), performs 58% worse than the

RAID array with all normal SSDs. The overall throughput is bottlenecked by the NVMe0-

degraded SSD, which achieves only 40% of the read performance compared to the normal

NVMe0 SSDs. This problem is not specific to Linux software RAID: our measurement also

shows a hardware controller (Broadcom MegaRAID SAS) producing very similar results.

Therefore, using SSDs of the same model cannot eliminate performance heterogeneity in

RAID. As devices wear out and are replaced, it can lead to aging differentials and perfor-

mance heterogeneity among devices.

6.3.2. Sustainability Cost from Underutilization

Operational emissions

We examine the sustainability efficiency of previous RAID configurations. Specifically, we

use the model developed in recent work [111] to estimate the operational carbon emissions

attributed to the unutilized device bandwidth. The model parameters are based on specifi-
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Figure 51: Operational emissions generated
by the unutilized device bandwidth.

Figure 52: Embodied emissions generated
by the unutilized device capacity.

cations from manufacturers.

Figure 51 presents the results. For case #1, the unused RAID bandwidth (denoted as

spare) generates 8.904 kg CO2 per terabyte of capacity annually, which accounts for 53%

of the total operational emissions. The SATA RAID in case #2 achieves better sustain-

ability (1.43 kg CO2 /TB-year) because of lower performance discrepancies. For case #3,

although the RAID is built on SSDs of the same model, it still leads to poor sustainability

with extra 6.148 kg CO2 /TB-year. As a result, conventional RAID architecture demon-

strates limited effectiveness in managing heterogeneous SSDs, which in turn results in low

storage utilization and poor sustainability.

Embodied emissions

We next analyze the embodied carbon emissions attributed to the unutilized device ca-

pacity with heterogeneous SSDs. In a RAID system, the capacity utilization (CU) can be

calculated using the formula:

CU =
Minimum disk capacity × # of disks

Aggregate disk capacity
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distributed (i.i.d) random variables following a uniform distribution. Therefore, the ex-

pected value of the minimum disk capacity (E[Min]) for a RAID built with N disks uni-

formly distributed over [a, b] is:

E[Min] = a+
b− a

N + 1

Particularly, a and b can be expressed in terms of mean (µ) and standard deviation ( σ) of

disk capacities:

a = µ−
√
3σ and b = µ+

√
3σ

By substituting back into E[Min], we get:

E[Min] = µ−
√
3σ +

2
√
3σ

N + 1
= µ−

√
3σ

(
N − 1

N + 1

)

Thus, the expected unutilized capacity for a given RAID can be derived as:

1− Expected CU = 1− E[Min]×N

Nµ
=

√
3

(
σ

µ

)(
N − 1

N + 1

)

where σ
µ

represents the relative capacity variation.

Figure 52 plots the embodied carbon emissions resulting from unutilized device capacity

for each terabyte of aggregated RAID capacity, given the number of disks (N) and coeffi-

cient of variation (σ
µ
). The emission value is calculated based on a 30nm NAND chip [48].

Overall, greater capacity variation and a higher number of disks result in more wasted em-

bodied emissions, indicating that increased heterogeneity among storage devices exacer-

bates the inefficiency of conventional RAID systems.
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6.4. Design of paRAID

Inspired by the observations and analysis above, we introduce paRAID (placement asymmetric

RAID). In this section, we first present the overview of the proposed design and outline

the key challenges (§ 6.4.1). We then describe the methodology for building the heterogeneity-

aware data layout (§ 6.4.2) and the performance-aware logical volume (§ 6.4.3). Lastly,

we explore the learning-based addressing approach (§ 6.4.4) and its enabled adaptive data

placement scheme (§ 6.4.5).

6.4.1. Overview

The proposed paRAID is designed to be heterogeneity-aware for both disks and workload

characteristics. The core idea is to asymmetrically distribute data across a larger disk pool

based on data temperature, as well as each device’s capacity and performance. As a re-

sult, paRAID improves storage performance and sustainability by adaptively using stor-

age resources because (1) more data will be allocated to larger SSDs and less to smaller

ones, and (2) hot data will be placed on fast SSDs while cold data will be stored on regu-

lar SSDs.

Figure 53 illustrates the overall architecture of the paRAID, for a (2+1) RAID5 configu-

ration from an N -disk array. Given the disk pool and RAID configuration, paRAID builds

a three-dimensional logical address space, an internal logical block layer between the user-

perceived logical and the SSD logical address spaces, where the depth corresponds to the

capacity of each individual device (Steps 1 – 4 ). paRAID then separates each address

space into one or more stripe groups and differentially exports them into a one-dimensional

logical address space to the host based on the device characteristics (Steps 5 – 6 ). Lastly,

paRAID learns and adaptively tunes the mapping between host and device address spaces

so that the performance-sensitive data are placed in fast SSDs and cold data are placed in
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Figure 53: Overview of paRAID: a (2+1) RAID5 configuration. Given the disk pool
and RAID configuration, paRAID constructs a mathematical model to optimize data
organization and maximize the address space (Steps 1–4). It differentially exports each
data stripe’s address space with learned logical-to-physical mapping (Steps 5–6). Finally,
paRAID adaptively tunes the addressing models based on access patterns to optimize the
usage of higher-performance devices (Steps 7–8).

slow SSDs for improved performance and disk utilization (Steps 7 – 8 ).

The novel challenges here are to (1) derive an efficient data organization to utilize the to-

tal aggregate capacity given a disk array where each device has a different capacity; (2)

achieve address translation between user space and AFA space with minimal overhead; as

well as (3) design a lightweight mechanism that allows the host to optimize the usage of

devices with higher performance based on workloads adaptively. We first explain the data

distribution model that stripes data unevenly across devices and the initial logical volume

layout. We then describe the learning-based addressing approach. Finally, we present the
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6.4.2. Heterogeneity-aware Data Distribution

For conventional N -disk RAID arrays, each data stripe consists of exactly N chunks, which

are uniformly distributed across N disks. To distribute data across a disk pool that ex-

ceeds the typical size of RAID arrays, one straightforward approach is to physically par-

tition the disk pool into two RAID groups [179], where each disk belongs to one RAID

array. RAID-50, for instance, adheres to this approach. However, while this approach

achieves good disk isolation and efficient stripes-to-disks mapping, only a fixed amount

of capacity is used for each device.

Alternatively, paRAID unevenly distributes data across the SSDs, with the goal of fully

utilizing the capacity of each SSD and maximizing the available logical capacity exported

to the host. Consequently, SSDs with larger capacity will be assigned more data and par-

ity chunks within the array.

In particular, this can be formulated as an optimization problem as follows: given disk

pool size N , size of the ith disk Si (where i ranges from 1 to N), data stripe width k (k <

N), and chunk size C. Let xijk be a binary decision variable representing whether chunk

k of data stripe j is assigned to disk i. The objective function is to maximize the num-

ber of complete k-width data stripes, denoted by D. There are three constraints inherited

from the RAID to ensure data reliability: (1) each chunk of each data stripe must be as-

signed to exactly one disk; (2) any two chunks within a data stripe are placed on different

disks; and (3) each disk can only accommodate a certain number of chunks based on its
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Maximize D

N∑
i=1

xijk = 1, ∀j,∀k

xijk + xijk′ ≤ 1, ∀i, ∀j,∀k′ ̸= k

D∑
j=1

K∑
k=1

xijk · C ≤ Si, ∀i

(6.1)

Improve the tractability: The analytical model above outlines a preliminary representation

by embedding the objective function within the constraints. To make it more tractable

Table 8: Summary of parameters used in the data organization model.

Notation Description

N Disk pool size

Si Size of the ith disk Si (1 ≤ i ≤ N)

k Data stripe width k (k < N)

C Data chunk size

Dmax
The theoretical upper bound of the number of
complete stripes of the given disk array

xijk
Binary decision variable indicating whether
chunk k of stripe j is placed in device i

zj
Binary decision variable indicating whether
stripe j is placed (1 ≤ j ≤ Dmax)

D
Objective function, the derived number of
complete stripes (D =

∑Dmax

j=1 zj)
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upper bound of the number of complete stripes of the given disk array, and zj, which is

another binary decision variable indicating whether stripe j is placed (where j ranges from

1 to Dmax). Table 8 summarizes the parameters used in the model.

Therefore, by linking xijk with zj, we can decouple the objective function from the con-

straints, and the formulations can be refined as follows:

Maximize D =
Dmax∑
j=1

zj

N∑
i=1

xijk = zj, ∀j,∀k

xijk + xijk′ ≤ zj, ∀i, ∀j,∀k ̸= k′

Dmax∑
j=1

K∑
k=1

xijk · C ≤ Si, ∀i

xijk ≤ zj, ∀i, ∀j,∀k

(6.2)

At this point, this combinatorial optimization problem can be solved using standard op-

timization techniques, for example, by taking advantage of integer linear programming

(ILP) techniques [138]. Specifically, the value of Dmax can be set as the total aggregate

capacity of the disk array divided by stripe size (i.e.,
⌊∑

S
k·C

⌋
). Figure 53 presents a simple

example of the derived stripe organization, assuming N = 5, k = 3, S = {6, 4, 2, 5, 2},

and C = 1. The derived stripe organization mathematically guarantees the maximum log-

ical address space given a disk array while allowing paRAID to asymmetrically place data

to fully utilize the aggregate capacity.
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The formulated analytical model provides an efficient data organization to utilize the total

aggregate capacity from a heterogeneous disk pool. However, there is another issue with

how to integrate the address space of each stripe into a single logical volume and export it

to the upper layers (e.g., file systems and host). Simply concatenating them will not yield

performance benefits, as logical blocks are equally treated and accessed from the perspec-

tive of the file system.

To tackle this, paRAID profiles the performance characteristics of each stripe group, which

involves fixed disk components derived from § 6.4.2. Based on the identified performance,

the disk components within stripe groups are adjusted if the performance of the intra-

group disks can be better aligned. paRAID then concatenates and exports the address

space of each stripe group, starting from the higher-performing stripes and continuing

to the lower-performing ones. Consequently, the basic layout of the logical volume is as

follows: the LBA0 perceived by the user will be mapped to the most performant disks,

while subsequent LBAs will be allocated to the progressively less performant disks. As il-

lustrated in Figure 53, the green blocks correspond to the most performant stripe group,

which consists of SSD 1, 2, and 4. The subsequent blue and yellow blocks are mapped to

less performant disks.

With that, it opens the door for the system to differentially use logical blocks, leading to

disks with higher performance being better utilized. As a result, performance-sensitive

data (i.e., metadata and hot data chunks) can be placed in the lower LBA space for op-

timized performance, and cold data can be placed in the higher LBA space for better ca-

pacity utilization.

On the other hand, this basic layout requires the file system and applications to be aware
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tween logical blocks and their allocation policy limits the ability to integrate with existing

systems. We address this challenge by proposing an adaptive data placement scheme in

§ 6.4.5, based on this basic layout.

6.4.4. Learned Model for Address Mapping

Given the derived data organization and logical volume layout, one intuitive approach to

translating a user-space address to a disk address is to adopt a deterministic mapping ta-

ble [64, 83, 179]. However, the chunk-level mapping table size is large, as device offsets

need to be stored for each logical data chunk. Among the data structures in an RAID

superblock, the address mapping table has the largest memory footprint [83, 153], which

could take approximately 1% of the aggregated capacity for an AFA.

Moreover, the mapping table can significantly affect both sustainability and performance

in RAID, as it not only determines the efficiency of L2P addressing, but also affects the

utilization of host DRAM [153, 163], which generates 12× more embodied carbon emis-

sions per bit [111]. As shown in Figure 54, a host LBA first needs to be translated to an

AFA-level address and then it can be converted to an SSD offset. This challenge becomes

even worse with the increasing flash memory capacity in an SSD, as larger address space

usually requires a larger mapping table for addressing [153].

To improve the mapping efficiency and reduce memory footprint, we propose a learning-

based addressing scheme. Unlike the conventional mapping table approach, the key idea is

to learn the correlation between a set of logical data chunks and their corresponding device

offsets, based on which it can build several space-efficient index segments. As presented

in Figure 54, paRAID adopts the piecewise linear regression models to learn the host-to-

device mappings for their simplicity and high computation efficiency compared to neural

network-based learning approaches [154].
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Figure 54: Mapping table-based v.s. learning-based approach for addressing in paRAID.

Since the learned index segment can be represented with (S, L,K, I) [153], where S de-

notes the start data chunk, L is the interval, K is the slope, and I is the intercept of the

index segment, each segment will take 14 bytes: 4 bytes for S, 4 bytes for L, 2 bytes for

K, and 4 bytes for I. Therefore, the disk offset of an LBA can be obtained with the ex-

pression: offsetSSD = f(LBA) = [K ∗LBA+I], where LBA ∈ [S, S+L]. Additionally, the

LBA of a given disk offset can be derived from the expression: LBA = f(offsetSSD) =

[(offsetSSD − I) / K], which is useful to determine the stripe ID for parity computations.

However, although this approach effectively reduces the mapping metadata overhead com-

pared to the mapping table approach, it still requires a hashing mechanism to index the

segments that have been learned from the data layout [164], which introduces additional

overhead and the issue of hash collisions in practical use.

To further optimize the metadata overhead, paRAID builds a tree of index segments, struc-

tured into two types of learned nodes: model nodes (intermediate nodes) and data nodes

(leaf nodes). The model nodes predict the index model in the subsequent level, and the
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chunk. The number of levels and the number of models in each level are determined based

on the cost model [35] during the RAID initialization process. By doing so, it improves the

training and reference efficiency by narrowing down the search space across layers. More-

over, the data node can now be simply represented with (K, I) (slope and intercept) with-

out the need for S (the start chunk ID) and L (the interval), as those are automatically

handled by model nodes. This hierarchical approach reduces the space overhead for map-

ping metadata by ~57% (i.e., 6 bytes instead of 14 bytes for each data model).

When a user-level LBA is provided, paRAID calculates its logical chunk and stripe IDs.

It then traverses the index tree, refining the location at each model node. Once the leaf

node is reached, it provides the corresponding device offset for the given LBA and the IO

request is sent to the underlying SSD.

6.4.5. Adaptive Data Placement

As previously mentioned, paRAID imbues performance information into logical blocks.

By default, it maps stripes consisting of higher-performance devices to lower LBA spaces

and stripes on lower-performance devices to higher LBA spaces. To manage such perfor-

mance asymmetry across logical blocks, it is essential to dynamically adapt the data place-

ment based on workload characteristics. Specifically, the hot data chunks identified in user

space should be automatically mapped to devices with higher performance, while cold data

chunks should be assigned to lower-performance devices.

Therefore, paRAID introduces an online workload profiler to monitor access patterns and

feed this information to addressing models, which enables dynamical adjustments to the

host-to-device mapping by updating index segments. In particular, paRAID profiles access

patterns by sampling device I/Os at the granularity of the configured RAID chunk size,

which is typically 64 KiB or larger [64, 71, 83, 96]. Similar to prior works [94, 139, 169],
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(EMA). For example, assuming that the number of accesses to a chunk in the ith profiling

interval is x, and the EMA at the (i − 1)th interval is EMAi−1, then the updated EMAi

can be computed as follows:

EMAi = d ∗ x+ (1− d) ∗ EMAi−1 (6.3)

where d is a decay factor (0.5 by default [94]) to balance the contribution of previous and

current profiling records.

The computed EMAs are then used to build an access histogram, in which the nth bin

contains all distinct chunks with the EMA value ranging from 2n to 2n+1. The hot bin

threshold, denoted as Hotthreshold, is decided based on the access histogram and the ag-

gregated capacity of higher-performance SSDs. The accumulated size of hot chunks in the

[binhot, binmax] is just smaller than the fast device capacity.

Therefore, once Hotthreshold is determined, data chunks that fall within [binhot, binmax] but

are not stored on fast SSDs are marked for promotion. Conversely, data chunks that are

stored on fast SSDs but do not fall within [binhot, binmax] are considered for demotion.

paRAID assigns a separate thread to manage this process. To reduce overhead, paRAID

prioritizes the hottest and coldest chunks in devices without outstanding I/Os and oppor-

tunistically migrates target chunks when they are modified by the host so that they can be

updated for free. The addressing models are also updated to reflect the new locations for

the corresponding chunks. With that, paRAID achieves better disk utilization by automat-

ically redirecting frequently accessed data chunks to fast SSDs and cold chunks to slower

SSDs without requiring any application-level changes.
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6.5. Evaluation

In this section, we evaluate paRAID and compare it against other designs under real-world

workloads. We first describe our experimental setup and then present the results.

6.5.1. Experimental Setup

Implementation and platform. paRAID requires no device level modifications and is

implemented upon the Linux kernel v5.15 based on StRAID [164] as a user-space AFA en-

gine, with 9667 lines of code changed. We use PuLP [137] to implement the data organi-

zation model and the solver is built based on the IBM CPLEX optimization library [59].

We run all experiments on a Dell PowerEdge T640 Server, with 32-core Intel Xeon Silver

4208 CPU, running Ubuntu 20.04 LTS. We utilize ten SSDs on two different RAID config-

urations: (1) 2+1 RAID5 with 6 devices and (2) 4+2 RAID6 with 10 devices (described in

Table 9). The chunk size is set to 64 KiB by default.

Workloads. We use 21 different workloads for evaluation: (1) 7 production traces from

Meta on different regions [167]. Each workload sampled production traffic from a Tec-

Table 9: System configuration and device characteristics.

RAID Types
Read/Write
BW (GiB/s)

Devices
(Capacity)

Config 1
(2+1) RAID5

NVMe 3.33/1.35
NVMe0 - NVMe2

(150, 120, 100 GiB)

SATA 0.48/0.43
SATA0 - SATA2
(80, 60, 20 GiB)

Config 2
(4+2) RAID6

NVMe 3.33/1.35
NVMe0 - NVMe3

(894, 894, 894 GiB)
NVMe 3.33/1.28 NVMe4 (2969 GiB)
NVMe 2.58/1.30 NVMe5 (894 GiB)

SATA 0.48/0.43
SATA0 - SATA3

(447,447,447,1740 GiB)



127tonic [131] cluster, spanning an entire data center; (2) 10 FIU traces [88] collected from an

all-flash array based HPC testbed [18]; and (3) 4 synthetic workloads, including sequential

full-stripe read/write and random partial-stripe read/write.

Methodology. We evaluate two of our designs, paRAID and paRAID-s (static data layout

without adaptive placement), against five state-of-the-art systems.

We provide a brief description for each compared design:

1. mdraid [121] is the default Linux RAID utility.

2. StRAID [164] assigns a dedicated worker thread for each stripe-write to improve par-

allelism and reduce lock contentions. It also opportunistically aggregates write IOs.

3. SWAN [83] adopts a spatial separation approach that partitions SSDs into front-end

and back-end groups to alleviate GC interference.

4. FusionRAID [64] utilizes RAID declustering and request redirection to avoid latency

spikes and improve performance consistency.

We answer the following questions in the evaluation:

• Can paRAID manage heterogeneous devices and improve performance under real-

world workloads? (§ 6.5.2)

• Can paRAID improve system sustainability? (§ 6.5.3)

• Can the data organization model utilize disk capacity efficiently? (§ 6.5.4)

• Is the learning-based addressing approach efficient? (§ 6.5.5)

• How does paRAID perform under homogeneous RAID configurations? (§ 6.5.6)

• How does paRAID perform under degraded mode? (§ 6.5.7)
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In this section, we evaluate the performance of paRAID with two configurations under

Meta and FIU workloads.

RAID5

We first configure a disk pool with 3 NVMe SSDs and 3 SATA SSDs, each having a dif-

ferent capacity (Table 9, config 1). Upon that, we build a RAID5 array where each stripe

consists of 2 data chunks and 1 parity chunk. For paRAID and paRAID-s, the initial data

layout is determined based on the data organization model and the profiled device perfor-

mance, which takes 0.09 seconds in this experiment. For the conventional RAID, we man-

ually partition the disks and aggregate each sub-RAID using Linux device-mapper [158].

The traces are issued by 8 worker threads concurrently.

Meta traces. Figure 55 shows the throughput of paRAID and other designs across 7

workloads from Meta. paRAID delivers significantly better performance than conven-

tional solutions, where device heterogeneity is not adequately considered in their designs.

In particular, paRAID outperforms mdraid by 2.63× under region 1 workload and by 1.9×

on average across all workloads. We observe that LogRAID delivers a lower performance

than mdraid on average, which is because LogRAID targets to optimize write performance

while the traces are read/write mixed. It not only introduces an additional layer of indi-

rection between the host and devices, but also requires AFA-level garbage collection, which

is also bottlenecked by the poor-performing devices. paRAID-s achieves a similar perfor-

mance with FusionRAID, due to its optimized logical volume layout and more aligned de-

vice performance within stripes. By adaptively mapping hot and cold data chunks, paRAID

outperforms conventional solutions by up to 2.63× and achieves better utilization of disk

components, as shown in Figure 56. Figure 57 plots latency results at major percentiles.

Compared to conventional approaches, paRAID decreases the 99th and 99.9th latency by



129

(a) region 1. (b) region 2. (c) region 3.

(d) region 4. (e) region 5. (f) region 6.

(g) region 7.

Figure 55: Performance result of RAID5 under Meta traces.

46% and 48%, respectively.

FIU traces. Figure 58 compares the performance results under FIU workloads (showing
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Figure 56: IO distribution under Meta
workloads.

Figure 57: IO latency under Meta work-
loads.

9 traces due to limited space). Overall, paRAID outperforms mdraid by 1.99× on aver-

age and by up to 2.52× under the madmax workload, as shown in Figure 58d. Based on

the results, we make the following observations. First, the conventional approaches fail

to manage heterogeneous SSDs efficiently. The throughput is bottlenecked by the SATA

SSDs. Second, although techniques like spatial partition (SWAN) and RAID declustering

(FusionRAID) improve RAID performance with homogeneous devices, they present limited

effectiveness under heterogeneous environments. Specifically, FusionRAID only achieves

60% of the paRAID performance on average. Third, to optimize the usage of NVMe SSDs,

it is necessary to tune the data layout adaptively, as indicated by the performance differ-

ence between paRAID-s and paRAID.

RAID6

We next investigate the performance benefits of paRAID under RAID6 configuration. For

this experiment, the underlying disk pool consists of 10 SSDs with different characteristics

(Table 9, config 2). Each data stripe contains 4 data chunks and 2 parity chunks, a com-

mon RAID6 configuration [177]. The formulated data organization model takes 20.48 sec-

onds to solve on our server with this configuration, due to the more complex search space

compared to configuration 1. However, such overhead only happens once during the RAID
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(a) casa. (b) homes. (c) ikki.

(d) madmax. (e) online. (f) topgun.

(g) webmail. (h) webresearch. (i) webusers.

Figure 58: Performance result of RAID5 under FIU traces.
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(a) region 1. (b) region 2. (c) region 3.

(d) region 4. (e) region 5. (f) region 6.

(g) region 7.

Figure 59: Performance result of RAID6 under Meta traces.

initialization stage. Moreover, solver parameters (e.g., gapRel or timeLimit) can be tuned

to optimize model solving process.



133

(a) casa. (b) homes. (c) ikki.

(d) madmax. (e) online. (f) topgun.

(g) webmail. (h) webresearch. (i) webusers.

Figure 60: Performance result of RAID6 under FIU traces.
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Meta workloads. With a larger data stripe size, the overall performance is more likely to

be bottlenecked by SATA SSDs. Under the heterogeneous setting, LogRAID performs

worse than mdraid due to its addressing and garbage collection overhead. StRAID and

SWAN deliver negligible benefits. For SWAN, its partitioning algorithm requires devices

to have similar performance, limiting its effectiveness in heterogeneous environments. Fu-

sionRAID performs better than mdraid thanks to its request redirection scheme. By miti-

gating intro-stripe performance discrepancy, paRAID-s achieves a comparable performance

to FusionRAID on average. Finally, with adaptive data placement, paRAID outperforms

mdraid by 1.91× across the workloads.

FIU traces. Figure 60 plots the results of RAID6 under FIU traces. Since the FIU work-

loads contain more small write IOs, StRAID performs better than previous cases and ben-

efits more from its run-to-complete I/O processing and parity cache design. On average,

the performance of paRAID is higher than mdraid by 1.68×.

6.5.3. Sustainability

To assess sustainability, we investigate the carbon emissions of different AFA systems for

a 5-year deployment. We use the ACT model [48] to estimate operational and embodied

emissions from flash and DRAM, and optimistically assume that different flash densities

will have the same cost and emissions per cell [111]. The embodied emission values are

based on Seagate Nytro 3331 for flash devices and a 10nm DDR4 for DRAM. We calculate

all results based on the average performance of each system across workloads.

Figure 61 shows the estimated emission per year for each system. The RAID6 configu-

ration generates more emissions than RAID5 due to the larger aggregated capacity. Lo-

gRAID achieves poor sustainability because of its relatively lower performance and higher

DRAM overhead for metadata (i.e., roughly 0.51% of the total storage capacity). On the
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and achieves better sustainability. paRAID achieves the lowest emission and improves

sustainability by 65% compared to mdraid due to the higher overall performance and low

metadata overhead.

6.5.4. Data Organization Model

We evaluate the data organization model under RAID configurations with varying disk

pool sizes (N) and capacity variation factors (σ
µ
). The average disk capacity and data

stripe width are set as 10 TiB and 6 × 64KiB (i.e., six 64KiB chunks) respectively. We

compare the derived logical capacity from the model with the aggregated physical capacity

of disks.

As shown in Figure 62, the derived data organization efficiently utilizes the capacity of

each disk, leading to the utilization rate of 100% in most cases. On average, it outperforms

the manually configured data layout by 19%, which always prioritizes the device with the

largest available capacity to maximize the AFA address space. In the case of σ
µ
= 0.5 and

N = 10, paRAID achieves a utilization rate of 93%. This reduction is due to (1) the high

capacity variation factor and (2) the large data stripe width (6 chunks over 10 SSDs).

6.5.5. Performance of Learned Addressing

As shown in Table 10, the learned index models take 1,328 bytes and 14,288 bytes of mem-

ory under the RAID5 and RAID6 configurations, which is only 2.1 bytes per GiB storage

capacity. The overhead for reference and update is low, thanks to the simplicity of linear

models. Specifically, the reference operation takes 72 ns and 76 ns on average, while the

Table 10: Performance of the linear addressing models.

System AFA Capacity Model Size Reference Update
RAID5 528 GiB 1,328 bytes 72 ns 145 ns
RAID6 8.51 TiB 14,288 bytes 76 ns 183 ns
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Figure 61: Yearly carbon emissions for different AFA systems. paRAID reduces carbon
emissions by 65% compared to mdraid, due to the higher overall performance and low
metadata overhead.

update takes 145 ns and 183 ns for RAID5 and RAID6.

6.5.6. Homogeneous Environment

We use 3 NVMe SSDs of the same model to build a homogeneous (2+1) RAID5 array

with 64 KiB chunk size. Figure 63 plots the results under four synthetic workloads: (1)

P-write: 64 KiB random partial-stripe writes; (2) F-write: 192 KiB sequential full-stripe

writes; (3) P-read: 64 KiB random partial-stripe reads; and (4) F-read: 192 KiB sequential

full-stripe reads. Overall, paRAID achieves a comparable performance to StRAID and out-

performs mdraid by 2.68× for large sequential writes and by 3.1× for small random writes.

FusionRAID outperforms paRAID by a small margin under small random writes due to

its two-phase writes mechanism. The performance of paRAID and paRAID-s is similar,

as there is no room for data layout tuning. The performance of read workloads is similar

across different designs.
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Figure 62: Capacity utilization under differ-
ent settings.

Figure 63: Performance comparison with
same SSDs.

6.5.7. Degraded Mode

We compare the degraded mode performance of paRAID, StRAID, and mdraid in a RAID5

setup consisting of two NVMe SSDs and one SATA SSD. We examine two configurations:

(1) One random NVMe SSD in the RAID array is set as failed and (2) The SATA SSD is

set as failed.

The results in Figure 64 indicate that the read throughput of degraded paRAID and Linux

MD differ by less than 5% on average. On the other hand, the write performance of de-

graded paRAID is 24% higher than that of Linux MD on average, due to its optimized

write path and lower lock contention. The performance of degraded paRAID and StRAID

is similar. We also observe that Figure 64b shows better performance than Figure 64a,

which is because more I/Os are issued to the NVMe SSD when the SATA SSD fails. Relia-

bility in paRAID is primarily managed through host-instructed RAID levels, similar to the

existing RAID architectures. The data recovery and degraded mode work in the same way

as the conventional RAID. Specifically, paRAID reconstructs data blocks by reading from
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(a) NVMe SSD failure. (b) SATA SSD failure.

Figure 64: paRAID degraded mode performance.

available disks and comparing their calculated parity results with the on-disk parity data.

6.6. Limitations

6.6.1. Dynamic Heterogeneity

The proposed architecture addresses the static disk heterogeneity when the system is ini-

tialized. However, the performance of SSDs can gradually degrade throughout their life-

time, which needs automatically optimizing data layout to adapt to dynamic disk hetero-

geneity. The challenge here is to minimize the data re-distribution overhead. One way to

solve this problem is via data-remapping as discussed in Chapter 5. However, we believe

that this approach may not be optimal as in RAID, data is located on different disks.

6.6.2. Reliability and Fault Tolerance.

At the current stage, paRAID operates in the same way as the legacy MD under disk fail-

ures. The missing data needs to be reconstructed from the remaining disks in the array.

We plan to consider the case where the reliability of the SSDs is also different. Unlike ex-

isting disk-adaptive redundancy schemes [71, 72], we will exploit machine-learning tech-

niques to predict SSD reliability changes and imbue this information into the block I/O

layer for more efficient data management and fault handling.
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In paRAID, each drive can contribute to multiple stripe groups. Different from conven-

tional RAID, when a larger capacity device is used, the added capacity can potentially

combine with spare capacity from other disks to create new data stripes. By inserting

them into existing stripe groups or developing new ones, these data stripes extend the

storage capacity. We consider investigating recent works [68, 84] to coordinate paRAID

and file systems for efficient online address space adjustment.

6.7. Conclusion

paRAID improves all-flash arrays’ performance, utilization, and sustainability by exploit-

ing the heterogeneity among modern SSDs. This requires a redesign of RAID to transition

from conventional symmetric architectures to an asymmetric architecture. Experimental

results show that paRAID outperforms state-of-the-art solutions in managing heteroge-

neous SSDs, allowing for higher disk utilization that reduces carbon emissions by up to

65%.
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Summary and conclusion

The explosive growth of data, driven by the era of big data, places significant stress on

storage infrastructures of computing systems. As data centers evolve to meet increasing

computational and storage requirements, efficiently managing this vast amount of data be-

comes a critical challenge for system architects. This thesis aims to optimize performance,

reliability, and sustainability across the I/O stack, spanning device firmware, the block I/O

layer, the file system, and RAID management, in NAND flash memory-based storage sys-

tems.

In particular, FF-SSD (Chapter 3) is a learning-based SSD aging framework that generates

representative future wear-out states. The analysis of modern SSD internals (Chapter 4)

uncovers the inefficiencies and unintended drawbacks of wear leveling algorithms in today’s

environments. CVSS (Chapter 5) addresses the fail-slow symptoms in solid-state drives

(SSDs) by developing a software/hardware co-design solution. paRAID (Chapter 6) is a

heterogeneity-aware RAID architecture for all-flash-array systems that optimizes storage

utilization and sustainability.

7.1. Flash Memory Characterization

The proposed system, known as the Fast-Forwardable SSD (FF-SSD), is the first ML-

based SSD aging framework of its kind. It achieves up to 99% accuracy in simulating aged

states, significantly accelerates simulation times, and is adaptable across multiple SSD de-

velopment platforms. The open-source artifacts of this work have been used by research

groups at institutions such as Columbia University and Boston University.
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7.2. Emerging Storage Device Internals

We quantify the performance of wear leveling (WL) in the context of modern flash mem-

ory with reduced endurance. Unfortunately, our findings show that existing WL exhibits

limited effectiveness and may generate counter-productive results. Instead of designing a

new wear leveling algorithm that patches these issues, we fundamentally ask if wear level-

ing is worth the trouble. Our findings shed light on the design of next-generation storage

devices and reveal that WL may become an artifact of the past. This work receives the

best paper award in HotStorage 2022 from Samsung Semiconductors.

7.3. File System and Block I/O

By enabling storage systems to dynamically adapt their capacity over time, the capacity-

variant storage system (CVSS) for SSDs provides a practical solution to the growing chal-

lenges of flash storage reliability and performance stability. Experimental results have

demonstrated practical benefits, including up to a 53% reduction in latency, a 316% im-

provement in throughput, and a 327% increase in device lifetime under real workloads.

7.4. RAID and All-Flash Array

paRAID redesigns RAID to transition from conventional symmetric architectures to a

more flexible, asymmetric architecture that aligns with the unique characteristics of each

SSD. Experiments with this system reveal a potential reduction in carbon emissions by up

to 65%, making it a more sustainable storage architecture for managing emerging storage

devices.
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Future research directions

I am excited to keep exploring new directions and to contribute solutions that address the

evolving challenges of our data-intensive world. My research will continue to focus on op-

timizing storage systems through three key aspects: performance, reliability, and sustain-

ability. Specifically, the following research directions are planned to be initiated.

8.1. HeteroRAID

8.1.1. Overview

We propose to improve the performance and sustainability of all-flash array (AFA) storage

under heterogeneous device environments for modern solid-state drives (SSDs). The key

insight behind this project is to adaptively and differentially use underlying storage com-

ponents based on their unique capacity, performance, and reliability characteristics. Our

prior work [68] has shown the presence of dynamic heterogeneity in modern SSDs. Build-

ing on this, we aim to design a heterogeneity-aware AFA system that transitions from tra-

ditional symmetric architectures to an asymmetric architecture, enabling the full utiliza-

tion of all storage devices for optimized performance and sustainability.

8.1.2. Motivation

All-flash arrays (AFAs), leveraging the high performance, reliability, and compact form

factor of solid-state drives (SSDs), have emerged as a promising solution to meet the grow-

ing storage demand in the big data era [64, 83]. However, the overall architecture of ex-

isting AFA systems is built around the assumption that the underlying storage compo-

nents are homogeneous. This architecture results in significant disk under-utilization when

considering heterogeneity among storage devices, particularly for modern SSDs [66]. The
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Otherwise, the aggregate capacity is determined by the minimal capacity device, making

devices with larger capacity underutilized. Moreover, by evenly spreading data across

the disks, the overall system performance and reliability are bottlenecked by the poor-

performing drives.

This inefficiency not only impacts performance but also exacerbates environmental chal-

lenges. As flash annual capacity production exceeds 765 Exabytes, the associated embod-

ied emissions amount to 122M metric tonnes of CO2 [186], equivalent to the average an-

nual CO2 emissions of 28M people [155]. By 2030, this figure is expected to rise to the

equivalent of over 150M people [38]. Addressing these sustainability concerns necessitates

the development of more efficient and sustainable storage designs that can fully exploit de-

vice heterogeneity [186].

8.1.3. Proposed Work

Existing all-flash array designs fail to manage heterogeneous SSDs efficiently. Moreover,

with the advancement in flash memory technology, modern SSDs, even for the same model,

exhibit very different characteristics and degrade over time, leading to severe disk under-

utilization and reduced system sustainability. This work will build a redundant array of in-

dependent disks (RAID) variant that factors in dynamic disk heterogeneity. The proposed

project has the following planned phases, each building on top of the previous.

• Phase 1: Fail-slow in RAID. The first phase aims to characterize the fail-slow symptoms

in RAID under various configurations. Since there is no framework that allows for a full-

stack study on SSD’s fail-slow symptoms in the RAID environment, we start by building a

RAID emulator capable of supporting various system settings while accurately emulating

the aging behaviors of the underlying SSDs. We will then build lightweight ML models for
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system configurations. We will focus on extracting the internal overheads such as the write

amplification factor, and use this to generate representative future device states.

• Phase 2: Metrics for Sustainability in AFA. One of the key prerequisites for sustainable

systems is the ability to define and measure sustainability in a holistic manner [40]. As

business management thinker Peter Drucker rightly said “if you can’t measure it, you can’t

improve it” [31]. In this phase, the central question we aim to address is how can we estab-

lish comprehensive metrics and cost functions that accurately capture the sustainability of

each component within AFA systems. Achieving true “sustainable” storage systems will re-

quire taking into account all factors that contribute to the sustainability footprint. We will

present new candidate metrics for sustainability beyond traditional power/energy metrics.

Existing solutions often focus on a single, possibly incomplete metric. For example, Power

Usage Effectiveness (PUE) [5] focuses on total energy consumption but ignores the energy

source (i.e., clean energy vs. grid energy) and the wear-and-tear of storage components.

Other metrics such as Carbon- [7] or WaterUsage Effectiveness [6] or Green PUE [37] are

too coarse-grained and cannot be applied to individual requests. Instead, our candidate

metric will incorporate the following aspects [40]: (1) operational energy, (2) energy source

cleanliness, (3) embodied costs, (4) device wear, (5) recycling costs, and (6) material con-

sumption and human costs. The proposed metrics have the potential to significantly im-

pact sustainable storage practices by incentivizing end-users and developers to engage in

sustainable computing initiatives within the storage ecosystem.

• Phase 3: Sustainability under heterogeneity. Building on the holistic sustainability met-

rics developed in Phase 2, this phase focuses on improving the sustainability of all-flash

arrays by integrating data and device characteristics into the RAID management layer.
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components to address the inefficiencies of traditional RAID architectures.

Unlike conventional RAID systems that rely on a balanced data layout and fixed redun-

dancy across all data, our approach leverages insights from our prior work [66] to avoid the

underutilization and inefficiency caused by such rigid designs. We propose a dynamic and

adaptive data management strategy guided by the following principles:

• Data Lifetime: Long-lived data or read-intensive data requires higher reliability and

should be placed on more reliable storage devices. This minimizes the risk of data

loss while improving the sustainability of the storage system.

• Storage Capacity, Performance, and Reliability: The available capacity of each device

will be used to ensure efficient utilization, particularly for devices with larger capac-

ities, which are underutilized in traditional systems. The performance and reliability

profiles of each storage component will also be considered to optimize placement for

workloads requiring specific performance guarantees.

• SSD Garbage Collection: Traditional RAID-like systems use a fixed-size data chunks,

which fails to exploit the tradeoffs between SSD internal parallelism and GC effi-

ciency. This rigid chunking strategy can lead to suboptimal performance and in-

creased write amplification. In contrast, we propose a disk- and workload-adaptive

chunking scheme that dynamically adjusts chunk sizes based on the underlying de-

vice characteristics and workload profiles. By tailoring chunk sizes, we can better

align with SSD internal parallelism to maximize throughput, while simultaneously

minimizing GC overhead through more efficient write patterns.

• Sustainability Cost: Placement decisions must balance overall per-data sustainability

cost (in dollars per lifetime per size) based on the workloads.
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mization task. Additionally, we will explore machine learning techniques (e.g., clustering +

KNN) to facilitate decision-making by predicting optimal configurations based on histori-

cal data and workload patterns.

The effectiveness of the proposed system will be evaluated using the metrics from Phase

2 to ensure that the design delivers measurable improvements in energy efficiency, storage

utilization, and overall sustainability. This iterative evaluation process will also provide

feedback for refining the design, ensuring alignment with sustainability goals.

• Phase 4: AFA over disaggregated storage. This phase focuses on extending the scope to

disaggregated storage using the NVMe-over-Fabrics (NVMe-oF) protocol. While aggregat-

ing multiple SSDs can significantly increase storage bandwidth, it often exceeds the capac-

ity of even high-end RDMA NICs (e.g., 100 Gbps), presenting a challenge to fully leverage

the performance potential of modern SSDs. To address this, we will explore approaches

that utilize SSD internal hardware resources and implement a host/device co-design. This

co-design will enable SSDs to communicate directly with their peers, bypassing the need

for continuous intervention from the RAID controller, thereby optimizing performance and

sustainability in disaggregated environments.
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APPENDIX

Mathematical Model for Capacity Utilization

in a RAID System

A.1. Capacity Utilization with Heterogeneous SSDs

The capacity utilization (CU) of a RAID system can be calculated using the formula:

CU =
Minimum Disk Capacity ×N∑N

i=1 Ci

where:

• N is the number of disks.

• Ci is the capacity of the i-th disk.

A.2. Assumptions

1. Disk Capacity Variable: Disk capacities (Ci) are independently and identically

distributed random variables.

2. Uniform Distribution: For simplification, we assume that disk capacities follow a

uniform distribution over a range [a, b].

A.3. Statistical Measures

Mean Disk Capacity (µ):

µ =
a+ b

2
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σ2 =
(b− a)2

12

Standard Deviation (σ):

σ =
b− a

2
√
3

Coefficient of Variation (CV):

CV =
σ

µ

A.4. Expected Minimum Disk Capacity

The expected value of the minimum disk capacity among N disks uniformly distributed

over [a, b] is:

E[Min] = a+
(b− a)

N + 1

Express a and b in terms of µ and σ:

b− a = 2
√
3σ

a = µ−
√
3σ

b = µ+
√
3σ



149Substitute back into E[Min]:

E[Min] = µ−
√
3σ +

2
√
3σ

N + 1

= µ−
√
3σ

(
1− 2

N + 1

)
= µ−

√
3σ

(
N − 1

N + 1

)

A.4.1. Calculating Expected Capacity Utilization

Substitute E[Min] into the capacity utilization formula:

Expected CU =
E[Min]×N

Nµ
=

E[Min]
µ

Thus:

Expected CU =

µ−
√
3σ

(
N − 1

N + 1

)
µ

= 1−
√
3

(
σ

µ

)(
N − 1

N + 1

)

Since CV =
σ

µ
:

Expected CU = 1−
√
3× CV ×

(
N − 1

N + 1

)

A.4.2. Final Model

Capacity Utilization (CU) = 1−
√
3× CV ×

(
N − 1

N + 1

)
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Alternatively,

Capacity Underutilization (1 - CU) =
√
3× CV ×

(
N − 1

N + 1

)

A.5. Example Calculations

1. Low Variance Scenario

Let CV = 0.1 and N = 5:

CU = 1−
√
3× 0.1×

(
5− 1

5 + 1

)
= 1−

√
3× 0.1×

(
4

6

)
≈ 1− 0.1155

≈ 0.8845

2. High Variance Scenario

Let CV = 0.3 and N = 5:

CU = 1−
√
3× 0.3×

(
5− 1

5 + 1

)
= 1−

√
3× 0.3×

(
4

6

)
≈ 1− 0.3464

≈ 0.6536
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