
Generating Realistic Wear Distributions for SSDs

Ziyang Jiao
Syracuse University

Bryan S. Kim
Syracuse University

Abstract
NAND flash-based solid-state drives (SSDs) have already

replaced hard disk drives (HDDs) as the mainstream storage
device. Highly accurate and complex SSD development plat-
forms, such as Amber [5], FEMU [12], and MQSim [18], that
model various flash technologies are becoming increasingly
used to conduct large-scale simulation-based research.

Due to the intrinsic NAND idiosyncrasies, flash memories
wear out as they are programmed and erased, and progres-
sively exhibit more errors as the wear accumulates [2, 13, 14].
Previous work has shown that SSDs present the fail-slow
symptoms [6] and the internal wear state can have a signif-
icant impact on the performance results [2, 9, 13]. which in
turn is affected by several factors, important amongst them are
garbage collection, wear leveling, and external workloads. Un-
fortunately, it is not rare that SSD evaluations are performed
under a fresh unworn or an unrealistic state [1, 4, 7, 10, 17].

However, generating realistic wear distribution for the pur-
poses of evaluating SSDs is challenging. Preconditioning is
a process to create representative internal states by applying
workload to an SSD over a period of time prior to the actual
evaluation phase. However, it is prohibitively expensive to
rely on preconditioning to reach a meaningful wear state. For
example, aging an SSD with three years worth of workloads
would also take three years of time or even longer on existing
SSD simulators and emulators.

In this work, we propose Fast-Forwardable SSD, a machine
learning-based SSD aging framework that generates repre-
sentative future wear-out states. However, the challenges of
using a machine learning approach for making online, fine-
grained inferences on SSD internal states are two-fold. First,
the inference must be accurate. Modern SSDs are a complex
embedded system, managing all of their internal resources
with background operations such as garbage collection, wear
leveling, error handling, and data scrubbing. We need to learn
these internal complexities to make the inference highly accu-
rate. Second, the inference must be fast and efficient relative
to the simulation time; otherwise, it either brings negligible
benefits or even prolongs the overall process, which indicates

deep learning models like CNN or RNN that would intro-
duce more complexities and computation overhead are not
applicable anymore.

To address these, FF-SSD incrementally builds a
lightweight regression model for each block to capture the
changes in SSD-internal states and predicts their trajectory, us-
ing the information from past executions. This model would
approximate the future wear state of an SSD device if the
same workload were to be repeated, and is much faster than
running the repeated workload. We evaluate our design using
real-world workloads [8, 11] and Figure 1 shows our prelimi-
nary results on FTLSim [3]: with one-third workload saving
compared to full simulation, FF-SSD continuously learns the
behavior within the SSD using the information from the past
two iterations of the workload, and then predicts the wear
state after one additional iteration. FF-SSD generates the final
states of SSD, and achieves the highest accuracy compared to
two prior works, DEVS [16] and C-ML [15].

The following directions will be investigated for future
work: (1) deeper analysis of FF-SSD over various workloads
(2) validating FF-SSD with different platforms and SSD mod-
els (i.e., OC-SSD, ZNS-SSD) (3) different methods to in-
crease both prediction accuracy and aging efficiency.

(a) Developer Tools Release [8]. (b) Virtual Desktop Infra [11].

Figure 1: Evaluation under real-world workloads. FF-SSD
achieves the highest accuracy (91% for DTRS and 97% for
VDI) compared to DEVS (87% for DTRS and 93% for VDI)
and C-ML (68% for DTRS and 83% for VDI). The accuracy
is computed using the mean difference in erase counts across
all blocks relative to their real values from full simulation.

1



References

[1] Rajiv Agarwal and Marcus Marrow. A closed-form
expression for write amplification in NAND flash. In
2010 IEEE Globecom Workshops, pages 1846–1850,
2010.

[2] Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo,
and Onur Mutlu. Error characterization, mitigation, and
recovery in flash-memory-based solid-state drives. Pro-
ceedings of the IEEE, 105(9):1666–1704, 2017.

[3] Peter Desnoyers. Analytic modeling of SSD write per-
formance. In International Systems and Storage Confer-
ence (SYSTOR), 2012.

[4] Peter Desnoyers. Analytic models of SSD write perfor-
mance. ACM Trans. Storage, 10(2), Mar. 2014.

[5] Donghyun Gouk, Miryeong Kwon, Jie Zhang, Sungjoon
Koh, Wonil Choi, Nam Sung Kim, Mahmut Kandemir,
and Myoungsoo Jung. Amber*: Enabling precise full-
system simulation with detailed modeling of all SSD re-
sources. In 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 469–
481, 2018.

[6] Haryadi S. Gunawi, Riza O. Suminto, Russell Sears,
Casey Golliher, Swaminathan Sundararaman, Xing Lin,
Tim Emami, Weiguang Sheng, Nematollah Bidokhti,
Caitie McCaffrey, Deepthi Srinivasan, Biswaranjan
Panda, Andrew Baptist, Gary Grider, Parks M. Fields,
Kevin Harms, Robert B. Ross, Andree Jacobson, Robert
Ricci, Kirk Webb, Peter Alvaro, H. Birali Runesha,
Mingzhe Hao, and Huaicheng Li. Fail-slow at scale:
Evidence of hardware performance faults in large pro-
duction systems. ACM Trans. Storage, 14(3), Oct. 2018.

[7] Xiao-Yu Hu, Evangelos Eleftheriou, Robert Haas, Ilias
Iliadis, and Roman Pletka. Write amplification anal-
ysis in flash-based solid state drives. In Proceedings
of SYSTOR 2009: The Israeli Experimental Systems
Conference, SYSTOR ’09. Association for Computing
Machinery, 2009.

[8] Swaroop Kavalanekar, Bruce L. Worthington, Qi Zhang,
and Vishal Sharda. Characterization of storage work-
load traces from production windows servers. In In-
ternational Symposium on Workload Characterization
(IISWC), 2008.

[9] Bryan S. Kim, Jongmoo Choi, and Sang Lyul Min. De-
sign tradeoffs for SSD reliability. USENIX Association,
2019.

[10] Jihun Kim, Joonsung Kim, Pyeongsu Park, Jong Kim,
and Jangwoo Kim. SSD performance modeling using

bottleneck analysis. IEEE Computer Architecture Let-
ters, 17(1):80–83, 2018.

[11] Chunghan Lee, Tatsuo Kumano, Tatsuma Matsuki, Hi-
roshi Endo, Naoto Fukumoto, and Mariko Sugawara.
Understanding storage traffic characteristics on enter-
prise virtual desktop infrastructure. In ACM Interna-
tional Systems and Storage Conference (SYSTOR), 2017.

[12] Huaicheng Li, Mingzhe Hao, Michael Hao Tong, Swami-
natahan Sundararaman, Matias Bjørling, and Haryadi S.
Gunawi. The case of FEMU: Cheap, accurate, scalable
and extensible flash emulator. USENIX Association,
2018.

[13] Neal R. Mielke, Robert E. Frickey, Ivan Kalastirsky,
Minyan Quan, Dmitry Ustinov, and Venkatesh J. Vasude-
van. Reliability of solid-state drives based on NAND
flash memory. Proceedings of the IEEE, 105(9):1725–
1750, Sep. 2017.

[14] Open NAND Flash Interface. ONFI 5.0 spec. http:
//www.onfi.org/specifications/, 2021.

[15] Daniel Christopher Powell and Björn Franke. Us-
ing continuous statistical machine learning to enable
high-speed performance prediction in hybrid instruction-
/cycle-accurate instruction set simulators. Association
for Computing Machinery, 2009.

[16] Hesham Saadawi, Gabriel Wainer, and German Pliego.
DEVS execution acceleration with machine learning. In
2016 Symposium on Theory of Modeling and Simulation
(TMS-DEVS), pages 1–6, 2016.

[17] Hui Sun, Xiao Qin, Fei Wu, and Changsheng Xie. Mea-
suring and analyzing write amplification characteristics
of solid state disks. In 2013 IEEE 21st International
Symposium on Modelling, Analysis and Simulation of
Computer and Telecommunication Systems, pages 212–
221, 2013.

[18] Arash Tavakkol, Juan Gómez-Luna, Mohammad
Sadrosadati, Saugata Ghose, and Onur Mutlu. MQSim:
A framework for enabling realistic studies of modern
multi-queue SSD devices. USENIX Association, 2018.

2

http://www.onfi.org/specifications/
http://www.onfi.org/specifications/

