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Abstract
NAND flash-based solid-state drives (SSDs) have already

replaced hard disk drives (HDDs) as the mainstream storage
device. Highly accurate and complex SSD development plat-
forms, such as Amber [5], FEMU [12], and MQSim [18], that
model various flash technologies are becoming increasingly
used to conduct large-scale simulation-based research.

Due to the intrinsic NAND idiosyncrasies, flash memories
wear out as they are programmed and erased, and progres-
sively exhibit more errors as the wear accumulates [2, 13, 14].
Previous work has shown that SSDs present the fail-slow
symptoms [6] and the internal wear state can have a signif-
icant impact on the performance results [2, 9, 13]. which in
turn is affected by several factors, important amongst them are
garbage collection, wear leveling, and external workloads. Un-
fortunately, it is not rare that SSD evaluations are performed
under a fresh unworn or an unrealistic state [1, 4, 7, 10, 17].

However, generating realistic wear distribution for the pur-
poses of evaluating SSDs is challenging. Preconditioning is
a process to create representative internal states by applying
workload to an SSD over a period of time prior to the actual
evaluation phase. However, it is prohibitively expensive to
rely on preconditioning to reach a meaningful wear state. For
example, aging an SSD with three years worth of workloads
would also take three years of time or even longer on existing
SSD simulators and emulators.

In this work, we propose Fast-Forwardable SSD, a machine
learning-based SSD aging framework that generates repre-
sentative future wear-out states. However, the challenges of
using a machine learning approach for making online, fine-
grained inferences on SSD internal states are two-fold. First,
the inference must be accurate. Modern SSDs are a complex
embedded system, managing all of their internal resources
with background operations such as garbage collection, wear
leveling, error handling, and data scrubbing. We need to learn
these internal complexities to make the inference highly accu-
rate. Second, the inference must be fast and efficient relative
to the simulation time; otherwise, it either brings negligible
benefits or even prolongs the overall process, which indicates

deep learning models like CNN or RNN that would intro-
duce more complexities and computation overhead are not
applicable anymore.

To address these, FF-SSD incrementally builds a
lightweight regression model for each block to capture the
changes in SSD-internal states and predicts their trajectory, us-
ing the information from past executions. This model would
approximate the future wear state of an SSD device if the
same workload were to be repeated, and is much faster than
running the repeated workload. We evaluate our design using
real-world workloads [8, 11] and Figure 1 shows our prelimi-
nary results on FTLSim [3]: with one-third workload saving
compared to full simulation, FF-SSD continuously learns the
behavior within the SSD using the information from the past
two iterations of the workload, and then predicts the wear
state after one additional iteration. FF-SSD generates the final
states of SSD, and achieves the highest accuracy compared to
two prior works, DEVS [16] and C-ML [15].

The following directions will be investigated for future
work: (1) deeper analysis of FF-SSD over various workloads
(2) validating FF-SSD with different platforms and SSD mod-
els (i.e., OC-SSD, ZNS-SSD) (3) different methods to in-
crease both prediction accuracy and aging efficiency.

(a) Developer Tools Release [8]. (b) Virtual Desktop Infra [11].

Figure 1: Evaluation under real-world workloads. FF-SSD
achieves the highest accuracy (91% for DTRS and 97% for
VDI) compared to DEVS (87% for DTRS and 93% for VDI)
and C-ML (68% for DTRS and 83% for VDI). The accuracy
is computed using the mean difference in erase counts across
all blocks relative to their real values from full simulation.
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